NOVA500⁽²⁾ SERIES 사용설명서 SD560⁽²⁾ (디지털 지시계)

디지털 지시계로서 전송출력과 경보출력을 지원하고 외부 접점 입력의 의한 Reset이 가능하며 PV표시 기능을 갖춘 제품입니다.

🕞 저작권

Copyright© 2016 ㈜삼원테크놀로지 이 사용 설명서는 저작권법에 의해 보호 받는 저작물입니다. ㈜삼원테크놀로지의 사전 서면 동의 없이 사용 설명서의 일부 또는 전체를 복제, 공중 송신, 배포, 번역하거나 전자 매체 또는 기계가 읽을 수 있는 형태로 바꿀 수 없습니다.

안전에 관한 주의(지시)사항

본 사용설명서에서 사용된 심볼 마크

- **"취급주의" 또는 "주의사항"을 표시합니다.** 이 사항을 위반할 시, 사망이나 중상 및 기기의 심각한 손상을 초래 할 수 있습니다.
 - (1) 제품: 인체 및 기기를 보호하기 위하여 반드시 숙지해야 할 사항이 있는 경우에 표시됩니다.
 (2) 사용자 설명서: 감전 등으로 인하여 사용자의 생명과 신체에 위험이 우려되는 경우, 이를 막기 위하여 주의사항을 기술하고 있습니다.

"접지단자"를 표시합니다. 제품설치 및 조작시 반드시 지면과 접지를 하여 주시기 바랍니다.

"보충설명"을 표시합니다. 설명을 보충하기 위한 내용을 기술하고 있습니다.

"참조사항"을 표시 참조하여야 할 내용에 대하여 기술하고 있습니다.

본 사용설명서에 관한 주의사항

- 본 사용설명서는 최종 사용자가 항시 소지할 수 있도록 전달하여 주시고 언제라도 볼 수 있는 장소에 보관하여 주시기 바랍니다.
- 본 제품은 사용설명서를 충분히 숙지한 후 사용하여 주시기 바랍니다.
- 본 사용설명서는 제품에 대한 상세기능을 자세하게 설명한 것으로, 사용설명서 이외의 사항에 대해서는 보증하지 않습니다.
- 본 사용설명서의 일부 또는 전부를 무단으로 편집 또는 복사하여 사용할 수 없습니다.
- 본사용설명서의 내용은 사전통보 또는 예고 없이 임의로 변경될 수 있습니다.
- 본 사용설명서는 만전을 기하여 작성되었지만, 내용상 미흡한 점 또는 오기, 누락 등이 있는 경우에는 구입처 (대리점 등) 또는 당사 영업부로 연락하여 주시면 감사하겠습니다.

안전에 관한 주의(지시)사항

본 제품의 안전 및 개조(변경)에 관한 주의사항

- 본 제품 및 본 제품에 연결하여 사용하는 시스템의 보호 및 안전을 위하여, 본 사용설명서의 안전에 관한 주의(지시) 사항을 숙지하신 후 본 제품을 사용하여 주시기 바랍니다.
- 본 사용설명서의 지시에 의하지 않고 사용 또는 취급된 경우 및 부주의 등으로 인하여 발생된 모든 손실에 대하여 당사는 책임을 지지 않습니다.
- 본 제품 및 본 제품에 연결하여 사용하는 시스템의 보호 및 안전을 위하여, 별도의 보호 또는 안전회로 등을 설치하는 경우에는 반드시 본 제품의 외부에 설치하여 주시기 바랍니다.
- 본 제품의 내부에 개조(변경) 또는 추가하는 것을 금합니다.
- 임의로 분해, 수리 개조하지 마십시오. 감전, 화재 및 오동작의 원인이 됩니다.
- 본 제품의 부품 및 소모품을 교환할 경우에는 반드시 당사 영업부로 연락을 주시기 바랍니다.
- 본 제품에 수분이 유입되지 않도록 해 주시기 바랍니다. 고장의 원인이 될 수 있습니다.
- 본 제품에 강한 충격을 주지 마십시오. 제품손상 및 오동작의 원인이 될 수 있습니다.

본 제품의 면책에 관하여

- 당사의 품질보증조건에서 정한 내용 이외에는, 본 제품에 대하여 어떠한 보증 및 책임을 지지 않습니다.
- 본 제품을 사용함에 있어 당사가 예측 불가능한 결함 및 천재지변으로 인하여 사용자 또는 제3자가 직접 또는 간접적인 피해를 입을 어떠한 경우라도 당사는 책임을 지지 않습니다.

본 제품의 품질보증조건에 관하여

- 제품의 보증기간은 본 제품을 구입한 날로부터 1년간으로 하며, 본 사용설명서에서 정한 정상적인 사용상태에서 발생한 고장의 경우에 한해 무상으로 수리해 드립니다.
- 제품의 보증기간 이후에 발생한 고장 등에 의한 수리는 당사에서 정한 기준에 의하여 실비(유상) 처리 합니다.
- 아래와 같은 경우, 보증수리기간 내에서 발생한 고장이라도 실비로 처리합니다.
 - (1) 사용자의 실수나 잘못으로 인한 고장(예: 비밀번호 분실에 의한 초기화 등)
 - (2) 천재지변에 의한 고장(예: 화재, 수해 등)
 - (3) 제품 설치 후 이동 등에 의한 고장
 - (4) 임의로 제품의 분해, 변경 또는 손상 등에 의한 고장
 - (5) 전원 불안정 등의 전원 이상으로 인한 고장
 - (6) 기타
- 고장 등으로 인하여 A/S가 필요한 경우에는 구입처 또는 당사 영업부로 연락 바랍니다.

안전에 관한 주의(지시)사항

설치장소 및 환경에 대한 주의사항

- 감전이 될 위험이 있으므로 본 제품을 판넬에 설치된 상태에서 통전(전원ON) 후 조작하여 주시기 바랍니다. (감전주의)
- 다음과 같은 장소 및 환경에서는 본 제품을 설치하지 말아 주시기 바랍니다.
 - (1) 사람이 무의식중에 단자에 접촉될 수 있는 장소
 - (2) 기계적인 진동이나 충격에 직접 노출된 장소
 - (3) 부식성 가스 또는 연소성 가스에 노출된 장소
 - (4) 온도변화가 많은 장소
 - (5) 지나치게 온도가 높거나(50℃ 이상), 낮은(10℃ 이하) 장소
 - (6) 직사광선에 직접 노출된 장소
 - (7) 전자파의 영향을 많이 받는 장소
 - (8) 습기가 많은 장소(주위습도가 85% 이상인 장소)
 - (9) 화재시 주위에 불에 타기 쉬운 물건들이 있는 장소
 - (10) 먼지나 염분 등이 많은 장소
 - (11) 자외선을 많이 받는 장소

설치시 주의사항

- 노이즈(NOISE)의 원인이 되는 기기 혹은 배선을 본 제품의 가까이에 두지 마십시오.
- 제품은 10~50℃(밀착 설치시 최대 40℃), 20~85%RH(결로되지 않을 것)의 범위에서 사용하여 주시기 바랍니다. 특히, 발열이 심한 기기를 가까이 하지 마십시오.
- 제품을 경사지게 설치하지 마십시오.
- 제품을 -20~60℃, 5~85%RH(결로되지 않을 것) 내에서 보관하여 주시기 바랍니다. 특히, 10℃이하 저온에서 사용하실 때에는 충분하게 워밍업(WARMING UP)을 시킨 후 사용하십시오.
- 배선시에는 모든 계기의 전원을 차단(OFF)시킨 후 배선하여 주시기 바랍니다. (감전주의)
- 젖은 손으로 작업하지 마십시오. 감전의 위험이 있습니다.
- 사용시 화재, 감전, 상해의 위험을 줄이기 위해 기본 주의 사항을 따라 주시기 바랍니다.
- 설치 및 사용방법은 사용설명서에 명시된 방법대로만 사용해 주시기 바랍니다.
- 접지에 필요한 내용은 설치 요령을 참조하십시오. 단, 수도관, 가스관, 전화선, 피뢰침에는 절대로 접지하지 마십시오. 폭발 및 인화의 위험이 있습니다.
- 본 제품의 기기간 접속이 끝나기 전에는 통전(전원ON)하지 마십시오. 고장의 원인이 됩니다.
- 본 제품에 있는 방열구를 막지 마십시오. 고장의 원인이 됩니다.

정격전압 및 소비전력 주의

• 본 제품은 별도의 조작없이 100~240VAC, 50/60Hz 10VAmax 에서 동작합니다.

• 정격 이외의 전원을 사용할 때에는 감전 및 화재의 위험이 있습니다.

공학단위(Engineering Units) - EU, EUS

- 공학단위인 EU, EUS는 컨트롤러의 내부파라메터를 설명하는데 사용됩니다.
- 센서 종류(IN-T)나 입력 범위의 상한・하한값(INRH, INRL)을 변경하면 EU(), EUS()로 표기된 파라메터는 기존 설정값에 비례해서 변경됩니다. (단, 범위 상한・하한 설정값은 초기화 됩니다.)
- ☞ EU() :계기(INSTRUMENT)의 범위(RANGE)에 따른 공학단위(ENGINEERING UNIT)의 값(VALUE)
- ☞ EUS():계기(INSTRUMENT)의 전범위(SPAN)에 따른 공학단위(ENGINEERING UNIT)의 범위(RANGE)

RL : 입력 범위 하한값 RH : 입력 범위 상한값

※ EU(), EUS()의 범위

	범위	중심점
EU(0 ~ 100%)	RL ~ RH	RH - RL /2 + RL
EU(-100 ~ 100%)	-(RH - RL + RL) ~ RH	RL
EUS(0 ~ 100%)	0 ~ RH - RL	RH - RL /2
EUS(-100 ~ 100%)	- RH - RL ~ RH - RL	0

* 예) INPUT = TC.K2

RANGE = - 200.0°C(RL) ~ 1370.0°C(RH)

	범위	중심점
EU(0 ~ 100%)	- 200.0 ~ 1370.0°C	585.0℃
EU(-100 ~ 100%)	- 1770.0 ~ 1370.0℃	- 200.0°C
EUS(0 ~ 100%)	0~1570.0°C	785.0℃
EUS(-100 ~ 100%)	- 1570.0 ~ 1570.0°c	℃.0

제품표기

숫자·문자 7세그먼트

■ LED의 수치·문자표시에 대해서 숫자 7세그먼트 LED에는 다음과 같이 표시합니다.

0	1	2	3	4	5	6	7
8	8	8	B	8	8	8	8
8	9		-	/	Half -	Half 1	Half -1
8	8	8.	8	8	-	-	-/

영자 7세그먼트

A, a	B, b	C, c	D, d	E, e	F, f	G, g	H, h
8	8	8	8	8	8	8	8
l, i	J, j	K, k	L, I	M, m	N, n	О, о	P, p
B	8	8	B	8	8	8	8
Q, q	R, r	S, s	T, t	U, u	V, v	W, w	Х, х
8	8	8	8	B	8	8	B
Ү, у	Z, z						
B	8						

■ LED의 수치·문자표시에 대해서 영자 7세그먼트 LED에는 다음과 같이 표시합니다.

취급상의 주의 숫자 5와 영자 5는 같은 표시로 됩니다.

목차

I 사용설명서
1. 제품의 치수 및 설치 8
1.1. 외형치수 및 판넬 커팅 치수
1.2. 마운트(MOUNT) 부착방법 ······ 9
1.3. 전원선 권장 사양
1.4. 단자 권장 사양
1.5. 단자배치 및 외부결선도
1.6. 전원배선
1.7. 측정입력(ANALOG INPUT)배선 13 1.7.1. 측온저항체 입력(RTD INPUT) 13 1.7.2. 직류전압 입력(DC VOLTAGE INPUT) 13 1.7.3. 직류전류 입력(DC CURRENT INPUT) 13
1.8. 전송출력(Retransmission) 배선 14
1.9. 외부접점입력(DI) 배선
1.10. 외부접점출력(릴레이) 배선 ······ 15
1.11. 통신(RS485) 배선 ······ 16
2. 표시부 및 키 조작 17
3. 표시화면의 구성 ······18
4. 파라메터 전개도
5. 그룹별 파라메터 설정

	5.1.	제어그룹(G.CTL) ~~~~~ 21
		5.1.1. PV 상/하한값 표시 ···································
		5.1.2. PV 표시 상/하한 설정 ···································
		5.1.3. 사용자 화면 설정 ~~~~~ 22
		5.1.4. Key 잠금 설정 ······23
		5.1.5. 외부접점입력 설정 ······23
		5.1.6. 암호 설정 ······ 24
		5.1.7. 초기화실행 ~~~~~ 24
	5.2.	입력그룹(G.IN) 25
		5.2.1. 입력종류 설정 ······ 25
		5.2.2. 입력단위 설정
		5.2.3. 입력 범위 설정
		5.2.4. 소수점 변경 설정
		5.2.5. PV 표시범위 설정 ·······28
		5.2.6. 입력 필터 설정
		5.2.7. 표시 필터 설정
		5.2.8. 센서 단선시 PV 동작 방향 설정
		5.2.9. 기준접점보상 기능 설정
		5.2.10. 입력 전체 보정 설정
		5.2.11.입력 구간 보정 설정
	5.3.	경보그룹(G.ALM) ····································
		5.3.1. 경보종류 설정
		5.3.2. 경보점 설정
		5.3.3. 히스테리시스 설정
		5.3.4. 지연시간 설정
	5.4.	전송출력그룹(G.RET) ~~~~ 36
		5.4.1. 전송출력 종류 설정 ···································
		5.4.2. 전송출력 상/하한 설정 36
	5.5.	통신그룹(G.COM) 38
	5.6.	PLC그룹(G.PLC) 40
	5.7.	현재 PLC 표시그룹(G.NPL) ····································
6.	에러	시 처리
π =		rd i l
ШŞ	신실	'명지 ····································

1.1.외형치수 및 판넬 커팅 치수

1.2. 마운트(MOUNT) 부착방법

- 1) 설치하고자 하는 판넬을 절단합니다. [1.1. 외형치수 및 판넬 커팅 치수 참조]
- 2) 상기 그림과 같이 본 제품을 본체의 후면부터 설치구멍에 삽입합니다.
- 3) 고정마운트를 이용하여 본체를 고정합니다. (드라이버 사용)

고정마운트의 체결시 주의사항

CAUTION

- 무리하게 조일경우, 부품 파손의 원인이 될 수 있습니다.
- 고정마운트 체결 최대토크는 0.25N · m 이하로 사용하시기 바랍니다.

1.3. 전원선 권장 사양

■비닐절연전선 KSC 3304 0.9~2.0 mf

1.4. 단자 권장 사양

■그림과 같은 M3 스크루(SCREW)에 적합한 절연 슬리브(SLEEVE)가 부착된 압착단자를 사용하여 주시기 바랍니다.

• 공급하는 모든 계기의 주전원을 차단(OFF)하여 배선 케이블(CABLE)이 통전되지 않는지 테스터(TESTER) 등으로 확인한 후 배선을 하여 주시기 바랍니다.

 - 반드시 주전원을 차단(OFF)시킨 후 배선을 하여 주시기 바랍니다.
 ・ 사용하지 않는 단자에 접속을 하는 경우에는 시스템의 손상이나 오동작 등 이상동작이 발생할 수 있으므로 결선하지 않도록 주의하여 주시기 바랍니다.

- 통전 중에는 감전될 위험이 있으므로 절대로 단자에 접촉되지 않도록 하여 주시기 바랍니다.

• 권장조임토크: 0.4N·m ~ 0.55N·m

1.5. 단자배치 및 외부결선도

1.6. 전원배선

- 전원배선은 비닐절연전선 0.9~2.0mm (최대정격전압 300V)와 동등 이상의 성능을 가진 케이블 또는 전선을 사용하여 배선하여 주시기 바랍니다.
- 이상 상황 발생에 대비하여 주전원 차단 장치를 사용하시기 바랍니다.

 전원선 배선의 경우, N상과 L상을 반드시 지켜서 연결해 주시기 바랍니다. 그렇지 않을 경우, 오동작 및 제품 파손의 원인이 될 수 있습니다.
 가정된 의첩이 있으므로, L&CTJ를 배서하 때에는 바도니 NOVASOO® 보게의 것인 미 이

• 감전될 위험이 있으므로 사용단자를 배선할 때에는 반드시 NOVA500° 본체의 전원 및 외부공급 전원을 OFF하여 주시기 바랍니다.

1.7. 측정입력(ANALOG INPUT)배선

• 입력극성에 주의하여 접속하여 주시기 바랍니다. 잘못된 접속은 본체의 고장 원인이 됩니다.

- 입력배선은 쉴드(SHIELD)가 부착된 것을 사용하여 주시기 바랍니다. 또한, 쉴드(SHIELD)는 1점 접지를 시켜 주시기 바랍니다.
- 측정입력 신호선은 전원회로 또는 접지회로로부터 간격을 띄워 배선하여 주시기 바랍니다.
 - 도선저항이 적고, 3선간의 저항 차가 없는 전선을 사용하여 주시기 바랍니다.

1.7.1. 측온저항체 입력(RTD INPUT)

1.7.2. 직류전압 입력(DC VOLTAGE INPUT)

1.7.3. 직류전류 입력(DC CURRENT INPUT)

1.8. 전송출력(Retransmission) 배선

• 전송출력을 배선할 때에는 반드시 NOVA500[®] 본체의 전원을 OFF하여 주시기 바랍니다. 감전의 위험이 있습니다.

- 출력극성에 주의하여 접속하여 주시기 바랍니다. 잘못된 접속은 본체의 고장 원인이 됩니다.
- 출력배선은 쉴드(SHIELD)가 부착된 것을 사용하여 주시기 바랍니다. 또한, 쉴드(SHIELD)는 1점 접지를 시켜 주시기 바랍니다.

▲ 전송출력(RET)

감전될 위험이 있으므로 수신기(기록계 등)의 설치 및 제거시에는 반드시 NOVA500[®] 본체 전원 및 외부공급전원을 OFF하여 주시기 바랍니다

1.9. 외부접점입력(DI) 배선

ŝ

CAUTION

■외부접점은 무전압접점(릴레이접점 등)을 사용하여 주시기 바랍니다.

O DI 1

) DI_2

NOVA500@

▲ 릴레이 접점입력의 경우

OFF하여 주시기 바랍니다

) di com

- ■무전압접점은 OFF시 단자전압(약 5V)과 ON시 전류(약 1mA)에 대하여, 충분히 개폐능력이 있는 것을 사용하여 주시기 바랍니다.

- ■오픈 콜렉타(OPEN COLLECTOR)를 사용할 때에는, 접점 ON시 양단전압이 2V 이하, 접점 ON시 누설전류가 100µA

이하의 것을 사용하여 주시기 바랍니다.

감전될 위험이 있으므로 외부접점입력을 배선할 경우, 반드시 NOVA500° 본체의 전원 및 외부공급전원을

▲ 트렌지스터 접점입력의 경우

K

+5V لج DI_1-

[™] 1 DI 2

O**∙**DI_COM NOVA500@

1.10. 외부접점출력(릴레이) 배선

- 보조 릴레이와 솔레노이드 밸브와 같은 인덕턴스(L) 부하를 사용하는 경우에는, 오동작 및 릴레이 고장의 원인이 되므로 반드시 스파크 제거용의 서지 억제기(SURGE SUPPRESSOR) 회로로 하여 CR 필터(AC 사용시) 또는 다이오드 (DIODE)(DC 사용시)를 병렬로 삽입하여 주시기 바랍니다.
- CR 필터 권장품
 - ▶ 성호전자 : BSE104R120 25V (0.1µ+120Ω)
 - ► HANA PARTS CO. : HN2EAC
 - ▶ 松尾電機(株) : CR UNIT 953, 955 etc
 - ▶ (株)指月電機製作所:SKV, SKVB etc
 - ▶ 信英通信工業(株) : CR-CFS, CR-U etc

▲ AC 전원시

- 저항부하가 본 제품의 Spec(사양)을 OVER시에는, 보조 릴레이를 사용하여 부하를 ON/OFF하여 주시기 바랍니다.
- 감전될 위험이 있으므로 외부접점출력을 배선할 경우, 반드시 NOVA500° 본체 전원 및 외부공급전원을 OFF하여 주시기 바랍니다.

- DIODE, CR 필터 연결 인덕턴스(L) 부하 단자(SOCKET)에 직접 연결하여 주시기 바랍니다.
- 보조 릴레이 연결 보조 릴레이 COIL 정격은 컨트롤러의 접점용량 이하의 것을 사용하여 주시기 바랍니다. (릴레이 접점용량: 250V AC 1A/30V DC 1A)

1.11. 통신(RS485) 배선

■ SLAVE측(NOVA500[@])은 최대 31대까지 멀티드롭(MULTIDROP)접속이 가능합니다.

■ 통신로의 양단에 있는 자국 또는 친국에는 반드시 종단저항(200요 1/4W)을 접속하여 주시기 바랍니다.

감전될 위험이 있으므로 통신을 배선할 경우, 반드시 NOVA500[°] 본체 전원 및 외부공급전원을 OFF하여 주시기 바랍니다.

2. 표시부 및 키 조작

번호	내용	번호	내용
1	PV 표시, 파라메터	6	수정하고자하는 소수점 위치 변경시 사용
2	ALM 1~4 동작시		•설정내용의 등록 및 파라메터 선택시 사용
8	파라메터 설정	6	• 운선화면에서 표시 화면 변경시 사용 • 운전화면에서 SET를 3초 이상 누른다. → "석것 하며" 으로 이동
4	파라메터의 내용 변경시, 그룹간의 이동시 사용		•설정 화면에서 SET를 3초 이상 누른다. → "운전화면" 으로 이동

3. 표시화면의 구성

(주1): 운전 제 1화면 전원투입시 최초로 표시 (주2): 사용자 화면1이 등록되어 있을 경우 (주3): 사용자 화면2이 등록되어 있을 경우

4. 파라메터 전개도

5.1. 제어그룹(G.CTL)

5.1.1. PV 상/하한값 표시

PV 입력값의 최저치를 표시하기 위한 파라메터입니다.
 (전원 On/Off시 초기화됩니다.)

PV 입력값의 최대치를 표시하기 위한 파라메터입니다.
 (전원 On/Off시 초기화됩니다.)

기호	파라메터	설정범위	단위	초기치	표시조건
PV.LO	PV Low Value	EU(-5.0 ~ 105.0%)	EU	EU(100.0%)	상시표시
PV.HI	PV High Value	EU(-5.0 ~ 105.0%)	EU	EU(0.0%)	상시표시

5.1.2. PV 표시 상/하한 설정

■ PV 표시창에 표시되는 센서입력값의 표시 상/하한치를 설정하기 위한 파라메터입니다.

■ 센서로부터 DSP.H 이상/DSP.L 이하의 값이 입력되어도 PV 표시창에는 DSP.H/ DSP.L 까지의 값만 표시됩니다.

단, 조절계 내부에서는 실제 센서입력값에 의한 조절계 동작을 합니다.

기호	파라메터	설정범위	단위	초기치	표시조건
DSP.H	Display High Limit	EU(-5.0 ~ 105.0%)	EU	EU(105.0%)	상시표시
DSP.L	Display Low Limit	(DSP.L < DSP.H)	EU	EU(-5.0%)	상시표시

5.1.3. 사용자 화면 설정

- 운전화면에 사용자가 자주 사용하거나 또는 확인하고자 하는 파라메터를 표시하도록 설정하기 위한 사용자 화면(USER SCREEN) 등록용 파라메터입니다.
- 통신설명서 D-Register를 참조하여 입력합니다.

기호	파라메터	설정범위	단위	초기치	표시조건
US1	User Screen1	OFF, D-Register 번호(0001~1299)	ABS	OFF	상시표시
US2	User Screen2	OFF, D-Register 번호(0001~1299)	ABS	OFF	상시표시

5.1.4. Key 잠금 설정

■ 갈못된 키 입력에 의한 조절계의 이상 동작을 방지하기 위하여 키에 의한 설정을 불가능하게 하기 위한 파라메터입니다.

■ LOCK이 'ON으로 설정되면, 운전화면의 SP를 비롯한 모든 파라메터의 설정이 제한됩니다.

기호	파라메터	설정범위	단위	초기치	표시조건
LOCK	Key Lock	OFF, ON	ABS	OFF	상시표시

5.1.5. 외부접점입력 설정

 외부접점입력 DI 옵션시 외부접점입력에 의한 조절계의 동작상태를 설정하기 위한 파라메터입니다.

(DI.SL의 설정에 의한 조절계의 동작은 [표1] DI 동작 참조)

기호	파라메터	설정범위	단위	초기치	표시조건
DI.SL	DI Selection	OFF, 1, 2	ABS	OFF	DI 옵션시

[표1] DI 동작

DI.SL	DI.SL DI1		동작
OFF	-	-	Start MIN, MAX
1	off	-	Reset MIN,MAX
	on	-	Start MIN, MAX
2	off	-	Reset MIN
	on	-	Start MIN
	-	off	Reset MAX
	-	on	Start MAX

5.1.6. 암호 설정

- 조절계에 암호를 등록하기 위한 파라메터입니다.
- U.PWD를 설정하면 파라메터 그룹 중 제어그룹(G.CTL) 진입 전의 암호 화면에 암호를 입력해야 합니다. 이 때 설정된 암호와 입력된 값이 일치하지 않으면 이후의 파라메터 그룹에 진입할 수 없습니다.

■ 공장 출하시에는 U.PWD가 '0'으로 되어 있습니다.

기호	파라메터	설정범위	단위	초기치	표시조건
U.PWD	User Password	0 ~ 9999	ABS	0	상시표시

• 암호를 등록했을 경우에는 잊지 않도록 주의하여 주시기 바랍니다.

• 암호를 잊어버렸을 경우에는 사용자의 조치가 불가능합니다. 이런 경우에는 당사의 서비스 부서로 제품을 보내 주시기 바랍니다.

5.1.7. 초기화 실행

	nl	E
	٥f	F

■ 조절계를 초기화하기 위한 파라메터입니다.

■ INIT를 'ON'으로 설정하면 조절계의 모든 파라메터가 초기화됩니다. (단, 통신은 초기화되지 않습니다.)

기호	파라메터	설정범위	단위	초기치	표시조건
INIT	Parameter Initialization	OFF, ON	ABS	OFF	상시표시

INIT 파라메터를 설정할 경우에는 조절계의 모든 파라메터가 공장출하시의 상태로 초기화됩니다. 각별히 주의하여 주시기 바랍니다.

5.2. 입력그룹(G.IN)

<i>PU</i> ,	SET 🕨	PĽd) (SET)	<u>G.C.E.L</u>	• 🖸 •	<u>Ll</u> n
운전화면	SET 3초	암호	SET	G.CTL	1번	G.IN
■ 입력 -	관련 파라띠	에터 그룹입	입니다.			
r 0	력종류(IN-T):열전대(T	'C), 측온저	항체(RTD), 직	루전압(DCV	/)
· 인	력 그룹이 열	념전대와 측은	2저항체일	경우에는 센서:	의 종류와 원	으도범위를 선

- 입력 그룹이 열전대와 측온저항체일 경우에는 센서의 종류와 온도범위를 선택할 수 있습니다.
- ☞ 입력 그룹이 직류전압일 경우에는 신호의 종류를 선택할 수 있습니다.

입력그룹의 파라메터의 설정변경은 다른 그룹에 있는 파라메터의 초기화 등에 영향을 주기 때문에 조절계 초기설정시 가장 먼저 설정하여야 합니다.

5.2.1. 입력종류 설정

■ 센서입력의 종류를 설정하기 위한 파라메터입니다.

본 조절계에서 설정할 수 있는 센서입력은 [표2] 센서입력 종류 참조하여 센서입력의 종류를 선택합니다.

기호	파라메터	설정범위	단위	초기치	표시조건
IN-T	Input Sensor Type	상세는 [표2] 센서입력 종류 참조	ABS	TC.K1	상시표시

5.2.2. 입력단위 설정

■ 입력단위를 "℃" 또는 "·F"중에서 선택합니다.

■ IN-U를 변경하면 단위에 따라 온도범위가 자동으로 변환됩니다.

■ IN-U는 센서종류(IN-T)가 TC 혹은 RTD 일 경우에만 적용 가능합니다.

온도단위의 설정 변경시의 표시 범위는 [표2] 센서입력 종류 참조합니다.

기호	파라메터	설정범위	단위	초기치	표시조건
IN-U	Input Unit	°C / °F	ABS	C	IN-T = TC or RTD

센서 종류 변경시 모든 파라메터가 초기화됩니다. (단, 통신은 초기화 되지 않습니다.) 각별히 주의하여 주시기 바랍니다. [표2] 센서입력 종류

* 표시범위 : 하기범위의 -5% ~ +105%

그룹	기호	온도범위(℃)	온도범위(°F)	측정정도		
	TC.K1	-200 ~ 1370	-300 ~ 2500			
	TC.K2	-200.0 ~ 1370.0	-300 .0~ 1900.0			
	TC,J	-200.0 ~ 1200.0	-300 .0~ 1900.0	0℃이상 온도범위의 ±0.1% ±1digit 0℃미마 오도범의의 +0.2% +1digit		
	TC.E	-200.0 ~ 1000.0	-300.0 ~ 1800.0			
	TC.T	-200.0 ~ 400.0	-300 .0~ 750.0			
T/C	TC.R	0.0 ~ 1700.0	32 ~ 3100	온도범위의 ±0.15% ±1digit		
	TC.B	0.0 ~ 1800.0	32 ~ 3300	400℃이상 온도범위의 ±0.15% ±1digit 400℃미만 온도범위의 ±5% ±1digit		
T/C	TC.S	0.0 ~ 1700.0	32 ~ 3100	온도범위의 ±0.15% ±1digit		
	TC,L	-200.0 ~ 900.0	-300 ~ 1600	0℃이상 온도범위의 ±0.1% ±1digit 0℃미만 온도범위의 ±0.2% ±1digit		
	TC.N	-200.0 ~ 1300.0	-300 ~ 2400	0℃이상 온도범위의 ±0.1% ±1digit 0℃미만 온도범위의 ±0.25% ±1digit		
-	TC.U	-200.0 ~ 400.0	-300 .0~ 750.0	0℃이상 온도범위의 ±0.1% ±1digit 0℃미만 온도범위의 ±0.2% ±1digit		
	TC.W	0~2300	32 ~ 4200	온도범위의 ±0.2% ±1digit		
	TC.PL	0.0 ~ 1390.0	32 ~ 2500	온도범위의 ±0.1% ±1digit		
	TC.C	0~2320	32 ~ 4200	온도범위의 ±0.2% ±1digit		
	PTA	-200.0 ~ 850.0	-300.0 ~ 1560.0	오드버이이 +0 1% +1digit		
	PTB	-200.0 ~ 500.0	-300.0 ~ 1000.0	는		
	PTC	-50.00 ~ 150.00	-148.0 ~ 300.0	별도 문의		
RID	PTD	-200 ~ 850	-300 ~ 1560	온도범위의 ±0.1% ±1digit		
	JPTA	-200.0 ~ 500.0	-300.0 ~ 1000.0	온도범위의 ±0.1% ±1digit		
	JPTB	-50.00 ~ 150.00	-148.0 ~ 300.0	별도 문의		
	2V	0.400 ~ 2.000V(·	-10000 ~ 19999)			
	5V	1.000 ~ 5.000V(·	-10000 ~ 19999)			
DCV	10V	0.00 ~ 10.00V(-	10000 ~ 19999)	스케일 설정범위의 ±0.1% ±1digit		
DCV	20MV	-10.00 ~ 20.00mV	/(-10000 ~ 19999)			
	100MV	0.0 ~ 100.0mV(-10000 ~ 19999)				

☞ 기준동작상태[23±2℃, 55±10%RH, 전원주파수 50/60Hz]에서의 성능입니다.

☞ 4~20mA DC 신호를 수신하는 경우는 DCV 5V(1~5V DC)를 선택하여, 250Ω저항을 연결합니다.

5.2.3. 입력 범위 설정

 센서입력 범위의 상/하한값을 설정하기 위한 파라메터입니다.
 TC, RTD 입력
 TC, RTD 입력은 센서종류를 설정하면, [표2] 센서입력 종류에 따라 입력범위가 결정됩니다.
 이 때, 결정된 범위 내에서 IN.RH, IN.RL을 변경하여 입력 범위를 변경할 수 있습니다.
 CY, mV 입력

전압 입력도 센서종류를 설정하여 입력 범위를 결정하는 것은 동일합니다. 결정된 범위 내에서 IN.RH, IN.RL을 변경하여 입력 범위를 변경할 수 있습니다.

기호	파라메터	설정범위	단위	초기치	표시조건
IN.RH	Input Range High	입력종류의 온도범위내	EU	EU(100%)	상시표시
IN.RL	Input Range Low	[표2] 센지입덕 공류 점조 단, IN.RH 〉 IN.RL	EU	EU(0.0%)	상시표시

? NOT

입력 범위 설정 예

■ [표2] 센서입력 종류에서 열전대 입력범위 중 -200~1370 ℃ 선택하였을 때 하한범위 설정항목에"-100", 상한범위 설정항목에 "500"을 설정하면 -100~500 ℃ 의 범위로 사용이 제한됩니다.

5.2.4. 소수점 변경 설정

센서입력 종류가 mV 또는 V인 경우 측정입력의 소수점 위치를 설정하기 위한 파라메터입니다.

기호	파라메터	설정범위	단위	초기치	표시조건
IN.DP	Input Dot Position	0~3	ABS	1	IN-T = DCV

이 설정에 의해 PV의 소수점위치와 관계되는 파라메터의 소수점위치도 변경됩니다. EU, EUS 관련 파라메터 모두 변경됩니다.

5.2.5. PV 표시범위 설정

- 센서입력 종류가 mV 또는 V인 경우 측정입력에 대한 스케일(Scale)의 상한값을 설정하기 위한 파라메터입니다.
- 센서입력 종류가 mV 또는 V인 경우 측정입력에 대한 스케일(Scale)의 하한값을 설정하기 위한 파라메터입니다.

기호	파라메터	파라메터 설정범위		초기치	표시조건
IN.SH	Input Scale High	-10000 ~ 19999 단, IN.SH > IN.SL	ADC	100.0	IN-T = DCV
IN.SL	Input Scale Low	소수점의 위치는 IN.DP에 의함	ADS	0.0	IN-T = DCV

PV 표시범위 설정 예

- 입력종류로 전압입력(V, mV)을 선택하고 입력이 1~5V인 경우, 0~100 을 표시하려 할 경우, IN-T : 5V를 설정합니다.
- IN.SH: 100 (5V 입력시 "100" 표시)을 설정합니다.
- IN.SL: 0 (1V 입력시 "0" 표시)을 설정합니다.

5.2.6. 입력 필터 설정

 외란 및 노이즈 등에 의한 PV치의 흔들림 등이 발생할 경우 이를 완화시키기 위해 PV 필터를 설정하는 파라메터입니다.

기호	파라메터	설정범위	단위	초기치	표시조건
IN.FL	Input Sensor Filter	OFF, 1~120	ABS	OFF	상시표시

5.2.7. 표시 필터 설정

정상적으로 제어 중에 센서의 민감한 반응으로 PV치 흔들림이 발생할 경우 이를 완화시키기 위해 설정하는 파라메터입니다.

기호	파라메터	설정범위	단위	초기치	표시조건
D.FL	Display Filter	OFF, 1~120	ABS	OFF	상시표시

5.2.8. 센서 단선시 PV 동작 방향 설정

- 센서의 단선시(Sensor-Open) PV의 동작 방향을 선택하기 위한 파라메터입니다.
- B.SL의 설정값이 'UP'일 경우에는 PV가 센서입력 상한 방향으로, 'DOWN'일 경우에는 센서입력 하한 방향으로 동작합니다.
- B.SL의 초기치는 'UP으로 되어 있습니다.(단, mV, V 입력시에는 'OFF'로 초기화되고 10V, 20mV, 100mV는 S.OPN 체크하지 않습니다)

기호	파라메터	설정범위	단위	초기치	표시조건
B.SL	Burn Out Select (주1)	OFF, UP, DOWN	ABS	UP (DCV=OFF)	상시표시

* (주1) : S.OPN(Sensor-Open) = B.OUT(Burn-Out)

5.2.9. 기준접점보상 기능 설정

센서입력의 종류가 열건대(TC)일 경우 RJC(Reference Junction Compensation, 기준접점보상)의 사용 여부를 설정하기 위한 파라메터입니다.

기호	파라메터	설정범위	단위	초기치	표시조건
R.SL	RJC Select	ON, OFF	ABS	ON	IN-T = TC

5.2.10. 입력 전체 보정 설정

- PV 표시치의 전구간 OFFSET 조정을 합니다.
 - PV 표시치 = 입력치 + 입력전체보정치(AL.BS)

기호	파라메터	설정범위	단위	초기치	표시조건
AL.BS	All Bias Value	EUS(-100.0 ~ 100.0%)	EUS	EUS(0.0%)	상시표시

5.2.11. 입력 구간 보정 설정

- 보정 구간은 최대 4 구간까지 설정이 가능합니다.
 ·1구간: IN.RL(IN.SL) ↔ BS.P1
 ·2구간: BS.P1 ↔ BS.P2
 ·3구간: BS.P2 ↔ BS.P3
 ·4구간: BS.P3 ↔ IN.RH(IN.SH)
- 자세한 내용은 [그림1] 구간별 입력 보정(BIAS) 설정 예와 [그림2] 입력 보정 수식 예를 참조합니다.

PV치에 보정값(BIAS)을 설정하기 위해 보정 구간을 설정하는 파라메터입니다.

기호	파라메터	설정범위	단위	초기치	표시조건
BS.P#n	Reference Bias Point	$EU(0.0 \sim 100.0\%)$ IN.RL \leq BS.P1 \leq BS.P2 \leq BS.P3 \leq IN.RH	EU	EU(100.0%)	상시표시

#n = 1~3

<u>650</u>

- 보정구간에 적용되는 PV치 보정값(BIAS)을 설정하기 위한 파라메터입니다.
- 자세한 내용은 [그림1] 구간별 입력 보정(BIAS) 설정 예와 [그림2] 입력 보정 수식 예를 참조합니다.

기호	파라메터	설정범위	단위	초기치	표시조건
BS#n	Bias Value for BS.P Point	EUS(-100.0~100.0%)	EUS	0	상시표시

#n = 0~4

■ 0℃~100℃에서 사용하는 제어대상체의 실제온도를 측정한 결과 25℃에서 +2℃, 50℃에서 -1℃, 75℃에서 +3℃의 편차가 발생하고 이를 보정할 경우, RL = 0℃, BSP1=25℃, BSP2=50℃, BSP3=75℃, RH=100℃ BS0 = 0℃, BS1=-2℃, BS2=+1℃, BS3=-3℃, BS4=0℃

[그림2] 입력 보정 수식 예

- 온도보정치 = 보정 후 온도 실제온도
- 보정 후 600℃에서 온도(P)

P = 600 + (600 - BPS2) X - BS3 - BS2 BSP3 - BSP2 + BS2

PV 입력 처리

- PV가 입력 범위의 -5% 이하이거나 105% 이상일 경우에, PV 표시부에 -OVR 혹은 OVR를 표시합니다.
- 내부적으로, PV는 -5%, 105%가 되어 모든 처리가 계속됩니다.
 - PV 〉 EU(105%): PV = 105%, PV 표시 = OVR
 - $EU(-5\%) \le PV \le EU(105\%) : PV = PV$
 - PV < EU(-5%) : PV = -5%, PV 표시 = -OVR
- 센서 종류 변경시 모든 파라메터가 초기화됩니다. (단, 통신은 초기화 되지 않습니다.)
- 입력 종류나 입력 범위를 변경하면 입력 범위에 관련된 파라메터들, 즉 단위가 EU 혹은 EUS 인 파라메터들이 입력 범위에 따라 변경되므로 EU 혹은 EUS 의 단위를 갖는 파라메터들 보다 앞서 센서종류를 설정하여야 합니다.

- 설정 예
 - Pt100Ω 입력을 받아 -50.0~500.0℃로 사용하며 소수점 한 자리수를 표시하려고 하는 경우, - IN-T = PTA → PTA (-200.0~850.0℃ 범위)를 입력센서로 사용합니다.
 - IN-U = ℃ → 표시단위는 " ℃ "입니다.
 - IN.RH = 500.0을 설정합니다.
 - IN.RL = -50.0을 설정합니다.

5.3. 경보그룹(G.ALM)

5.3.1. 경보종류 설정

기호	파라메터	설정범위	단위	초기치	표시조건
ALT#n	Alarm Type	[표3] 경보 종류 참조	ABS	AH.F	상시표시

#n = 1~4

5.3.2. 경보점 설정

ALT#n에 의해 설정된 경보종류에 대한 경보점을 설정하기 위한 파라메터입니다.
 (설정값 상/하한 동작일 때 나타납니다.)

기호	파라메터	설정범위	단위	초기치	표시조건
AL-#n	Alarm Set Value	EU(-100.0 ~ 100.0%)	EU	EU(100.0%)	상시표시

#n = 1~4
5.3.3. 히스테리시스 설정

■ 경보의 히스테리시스를 설정하기 위한 파라메터입니다.

기호	파라메터	설정범위	단위	초기치	표시조건
A#n.DB	Alarm Hysteresis Value	EUS(0.0 ~ 100.0%)	EUS	EUS(0.5%)	상시표시

#n = 1~4

5.3.4. 지연시간 설정

■ 경보 발생시 경보 출력의 지연시간(MM.SS)을 설정하기 위한 파라메터입니다.

기호	파라메터	설정범위	단위	초기치	표시조건
A#n.DY	Alarm Delay Time	0.00 ~ 99.59 (mm.ss)	TIME	0 sec	상시표시

#n = 1~4

경보의 표시 및 종류

- 출력방식
 정접 : 경보시 ON, 비경보시 OFF
 역접 : 경보시 OFF, 비경보시 ON
- 대기조건
 - 전원(Power) On시
 - 경보종류(Alarm Type) 변경시

[표3] 경보 종류

ШΥ		출력	방식	대기	동작	표시테이터
민포	<u>ל</u>	정접	역접	무	유	표시대의덕
1	PV 상한	0		0		AH.F
2	PV 하한	0		0		AL,F
3	PV 상한		0	0		AH.R
4	PV 하한		0	0		AL.R
5	PV 상한	0			0	AH,FS
6	PV 하한	0			0	AL,FS
7	PV 상한		0		0	AH,RS
8	PV 하한		0		0	AL.RS

[그림3] 경보 동작

G,RET

5.4. 전송출력그룹(G.RET)

5.4.1. 전송출력 종류 설정

■ 전송출력의 종류를 선택하기 위한 파라메터입니다.

■ LPS : 센서용 공급전원을 전송합니다.

PV : 현재 센서 입력값을 전송합니다.

기호	파라메터	설정범위	단위	초기치	표시조건
RET	Retransmission Type	LPS, PV	ABS	PV	상시표시

5.4.2. 전송출력 상/하한 설정

■ 전송출력의 상/하한값을 설정하기 위한 파라메터입니다.

■ 전송출력의 종류가 'PV'로 설정되었을 경우 전송출력 상한값(20mA)에 해당되는 값을 RET.H에, 전송출력 하한값(4mA)에 해당되는 값을 RET.L에 설정합니다.

기호	파라메터	설정범위	단위	초기치	표시조건
RET.H	Retransmission High Limit	TC, RTD : IN.RL ~ IN.RH	FU	IN.RH (TC, RTD)	사내표기
RET.L	Retransmission Low Limit	(RET.L < RET.H)	EU	IN.SH (DCV)	경시표시

전송출력(Retransmission Output)

■ 전송출력의 종류가 'PV'일 경우의 출력

[그림4] 전송출력의 종류가 'PV'일 경우의 출력

5.5. 통신그룹(G.COM)

■ 자세한 내용은 통신설명서를 참조하시기 바랍니다.

■ 통신 프로토콜(COMMUNICATION PROTOCOL)을 설정하기 위한 파라메터입니다.

기호	파라메터	설정범위	단위	초기치	표시조건
COM.P	Communication Protocol	PCCO, PCC1, MBS.A, MBS.R, P.OMR, P.MIT, P.LG, P.YKO, P.KEN, P.SIE	ABS	PCC1	옵션시

■ 통신 속도(BAUD RATE)를 설정하기 위한 파라메터입니다.

기호	파라메터	설정범위	단위	초기치	표시조건
BAUD	Baud Rate	9600, 19200, 38.4K, 57.6K, 115.2K	ABS	38.4K	옵션시

■ 통신 패리티(PARITY)를 설정하기 위한 파라메터입니다.

기호	파라메터	설정범위	단위	초기치	표시조건
PRTY	Parity	NONE, EVEN, ODD	ABS	NONE	옵션시

■ 통신 정지 비트(STOP BIT)를 설정하기 위한 파라메터입니다.

기호	파라메터	설정범위	단위	초기치	표시조건
S.BIT	Stop Bit	1, 2	ABS	1	옵션시

■ 통신 데이터 길이(DATA LENGTH)를 설정하기 위한 파라메터입니다.

■ COM.P가 MODBUS ASCII 또는 RTU로 설정되었을 경우에는 D.LEN 파라메터가 표시되지 않습니다.

기호	파라메터	설정범위	단위	초기치	표시조건
D.LEN	Data Length	7,8	ABS	8	옵션시 and COM.P = PCC0, PCC1

■ 조절계의 통신 주소(ADDRESS)를 설정하기 위한 파라메터입니다.

기호	파라메터	설정범위	단위	초기치	표시조건
ADDR	Address	1 ~ 99 (최대 31대까지 연결 가능)	ABS	1	옵션시

r P.E ñ

■ 조절계의 통신 응답시간(RESPONSE TIME)을 설정하기 위한 파라메터입니다.

■ RP.TM은 조절계가 상위로부터 명령을 수신한 후 수신 명령 처리가 끝난 다음 다시 상위로 응답 할 때 대기하기 위한 시간입니다.

■ RP.TM의 설정은 10msec의 배수로 설정되며, RP.TM = 0일 경우에는 명령 수신 후 명령 처리가 끝나면 곧바로 상위로 응답을 보냅니다.

기호	파라메터	설정범위	단위	초기치	표시조건
RP.TM	Response Time	0 ~ 10 (x10ms)	ABS	0	옵션시

5.6. PLC그룹(G.PLC)

- PLC그룹은 통신 프로토콜(COM.P의 설정범위 : P.OMR, P.MIT, P.LG, P.YKO, P.KEN, P.SIE)에서 PLC 프로토콜을 선택했을 경우 표시됩니다.
- 자세한 내용은 통신설명서를 참조하시기 바랍니다.

• 전송지연시간을 설정하기 위한 파라메터입니다.

■ 수신대기시간을 설정하기 위한 파라메터입니다.

기호	파라메터	설정범위	단위	초기치	표시조건
SW.TM	Send Delay Time	0~50	ABS	10	COM.P
RW.TM	Receive Delay Time	500~1000	ABS	1000	= PLC시

■ 최대연결수를 설정하기 위한 파라메터입니다.

기호	파라메터	설정범위	단위	초기치	표시조건
MU.NO	Max Number Of Connections	1~31	ABS	1	COM.P = PLC시

■ 레지스터타입을 설정하기 위한 파라메터입니다.

기호	파라메터	설정범위	단위	초기치	표시조건
R.TYP	Register Type	0~3	ABS	0	COM.P = PLC시

■ 시작주소를 설정하기 위한 파라메터입니다.

기호	파라메터	설정범위	단위	초기치	표시조건
S.ADR	Start Address	0~FFFF	ABS	03E8	COM.P = PLC시

■ 데이터 맵 선택을 설정하기 위한 파라메터입니다.

기호	파라메터	설정범위	단위	초기치	표시조건
MAP.S	Data Map Select	MAS.M, LOC.M	ABS	MAS.M	COM.P = PLC시

■ 읽기주소를 설정하기 위한 파라메터입니다.

기호	파라메터	설정범위	단위	초기치	표시조건
RO.01	Read Address 01	OFF, 0~200	ABS	151	COM.P = PLC시
:	:	:	:	:	:
RO.13	Read Address 13	OFF, 0~200	ABS	OFF	COM.P = PLC시

■ 쓰기주소를 설정하기 위한 파라메터입니다.

기호	파라메터	설정범위	단위	초기치	표시조건
RW.01	Write Address 01	OFF, 0~150	ABS	1	COM.P = PLC시
:	÷	:	:	:	:
RW.15	Write Address 15	OFF, 0~150	ABS	OFF	COM.P = PLC시

5.7. 현재 PLC 표시그룹(G.NPL)

- PH
 ►
 PH
 ►
 ■
 ►
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
- 현재 PLC 표시 관련 파라메터 그룹입니다.
- 현재 PLC 표시 그룹은 통신 프로토콜(COM.P의 설정범위: P.OMR, P.MIT, P.LG, P.YKO, P.KEN, P.SIE)에서 PLC 프로토콜을 선택했을 경우 표시됩니다.
- <u>n.54</u> 0 <u>n.r4</u>
 - 현재 전송지연시간을 표시하기 위한 파라메터입니다.

■ 현재 수신대기시간을 표시하기 위한 파라메터입니다.

기호	파라메터	설정범위	단위	초기치	표시조건
N.SWT	Now Send Delay Time	읽기 영역	ABS	0	COM.P = PLC시
N.RWT	Now Receive Delay Time	읽기 영역	ABS	0	COM.P = PLC시

■ 현재 레지스터타입을 표시하기 위한 파라메터입니다.

기호	파라메터	설정범위	단위	초기치	표시조건
N.RTY	Now Register Type	읽기 영역	ABS	0	COM.P = PLC시

■ 현재 시작주소를 표시하기 위한 파라메터입니다.

기호	파라메터	설정범위	단위	초기치	표시조건
N.SAD	Now Start Address	읽기 영역	ABS	0	COM.P = PLC시

■ 현재 읽기주소를 표시하기 위한 파라메터입니다.

기호	파라메터	설정범위	단위	초기치	표시조건
N.O01	Now Read Address 01	읽기 영역	ABS	OFF	COM.P = PLC시
:	÷	:	:	:	:
N.013	Now Read Address 13	읽기 영역	ABS	OFF	COM.P = PLC시

■ 현재 쓰기주소를 표시하기 위한 파라메터입니다.

기호	파라메터	설정범위	단위	초기치	표시조건
N.W01	Now Write Address 01	읽기 영역	ABS	OFF	COM.P = PLC시
:	:	:	:	:	:
N.W15	Now Write Address 15	읽기 영역	ABS	OFF	COM.P = PLCA

6. 에러시 처리

[표4] 에러시 처리

에러 표시	에러 내용	조치사항
E.SYS	EEPROM, DATA 손실	수리의뢰
E.RJC	기준접점보상 센서 불량	수리의뢰
파라메터창 소수점 점멸	통신상태 불량	통신회선 체크
S.OPN	센서 단선	센서 체크

EMO			

1.통신 개요
1.1. SD560 ^e 통신
1.2. 통신 배선
1.3. 통신 파라메터6
2.PC-LINK 통신8
2.1. PC-LINK 통신 커맨드의 구성8
2.2. CHECK SUM
2.3. 커맨드 종류10
2.3.1. RSD Command11
2.3.2. RRD Command 12
2.3.3. WSD Command
2.3.4. WRD Command
2.3.5. STD Command
2.3.6. CLD Command
2.3.7. AMI Command
2.3.8. 에러 코드
3.MODBUS 통신19
3.1. MODBUS 통신 커맨드의 구성19
3.2. 통신 기능 코드
3.2.1. 기능 코드 - 03
3.2.2. 기능 코드 - 06
3.2.3. 기능 코드 - 08
3.2.4. 기능 코드 - 16

4.Programless 통신25
4.1. 개요
4.2. 통신 설정
4.2.1. 프로토콜 설정
4.2.2. 통신속도, 패러티, 스톱비트, 데이터 길이 설정
4.2.3. 통신 주소 설정
4.2.4. 송신 지연시간, 수신 대기시간27
4.2.5. 최대 연결 개수27
4.2.6. 레지스터 타입 설정27
4.2.7. 시작 주소 설정
4.2.8. 데이터 맵 설정29
4.2.9. 메모리 영역 설정31
4.3. 데이터 처리와 통신 상태35
4.3.1. PLC와의 통신 절차
4.4. OMRON PLC와의 연결37
4.4.1. 연결 구성도
4.4.2. 통신 배선
4.4.3. SD560E 설정
4.4.4. PLC설정
4.4.5. 데이터 모니터링 및 설정40
4.5. MITSUBISHI PLC와의 연결41
4.5.1. 연결 구성도41
4.5.2. 통신 배선41
4.5.3. SD560E 설경42
4.5.4. PLC설정
4.5.5. 데이터 모니터링 및 설정43

5.LG PLC와의 연결44
4.6.1. 연결 구성도
4.6.2. 통신 배선
4.6.3. SD560E 설정45
4.6.4. PLC설정
4.6.5. 데이터 모니터링 및 설정46
7. YOKOGAWA PLC와의 연결47
4.7.1. 연결 구성도
4.7.2. 통신 배선
4.7.3. SD560E 설정
4.7.4. PLC설정
4.7.5. 데이터 모니터링 및 설정48
3. KEYENCE PLC와의 연결
3. KEYENCE PLC와의 연결
3. KEYENCE PLC와의 연결 50 4.8.1. 연결 구성도 50 4.8.2. 통신 배선 50
3. KEYENCE PLC와의 연결 50 4.8.1. 연결 구성도 50 4.8.2. 통신 배선 50 4.8.3. SD560E 설정 51
3. KEYENCE PLC와의 연결 50 4.8.1. 연결 구성도 50 4.8.2. 통신 배선 50 4.8.3. SD560E 설정 51 4.8.4. PLC설정 51
3. KEYENCE PLC와의 연결 50 4.8.1. 연결 구성도 50 4.8.2. 통신 배선 50 4.8.3. SD560E 설정 51 4.8.4. PLC설정 51 4.8.5. 데이터 모니터링 및 설정 52
3. KEYENCE PLC와의 연결 50 4.8.1. 연결 구성도 50 4.8.2. 통신 배선 50 4.8.3. SD560E 설정 51 4.8.4. PLC설정 51 4.8.5. 데이터 모니터링 및 설정 52 9. SIEMENS PLC와의 연결 53
3. KEYENCE PLC와의 연결 50 4.8.1. 연결 구성도 50 4.8.2. 통신 배선 50 4.8.3. SD560E 설정 51 4.8.4. PLC설정 51 4.8.5. 데이터 모니터링 및 설정 52 9. SIEMENS PLC와의 연결 53 4.9.1. 연결 구성도 53
8. KEYENCE PLC와의 연결 50 4.8.1. 연결 구성도 50 4.8.2. 통신 배선 50 4.8.3. SD560E 설정 51 4.8.4. PLC설정 51 4.8.5. 데이터 모니터링 및 설정 52 9. SIEMENS PLC와의 연결 53 4.9.1. 연결 구성도 53 4.9.2. 통신 배선 53
8. KEYENCE PLC와의 연결 50 4.8.1. 연결 구성도 50 4.8.2. 통신 배선 50 4.8.3. SD560E 설정 51 4.8.4. PLC설정 51 4.8.5. 데이터 모니터링 및 설정 52 9. SIEMENS PLC와의 연결 53 4.9.1. 연결 구성도 53 4.9.2. 통신 배선 53 4.9.3. SD560E 설정 54
8. KEYENCE PLC와의 연결 50 4.8.1. 연결 구성도 50 4.8.2. 통신 배선 50 4.8.3. SD560E 설정 51 4.8.4. PLC설정 51 4.8.5. 데이터 모니터링 및 설정 52 9. SIEMENS PLC와의 연결 53 4.9.1. 연결 구성도 53 4.9.2. 통신 배선 53 4.9.3. SD560E 설정 54

5.그 외 통신기능	56
5.1. BROADCAST MODE	
5.2. 서비스 포트	57
6.레지스터 가이드	58
6.1. PROCESS	59
6.2. FUNCTION GROUP	60
6.4. ALARM GROUP	60
6.5. IN/OUT GROUP	61
6.6. COMM GROUP	62
6.7. PLC GROUP	62
6.8. NPL GROUP	63
6.9. D-Register표	

1.통신 개요

1.1. SD560[°] 통신

■ SD560E 는 반이중 방식의 RS-485 통신 인터페이스를 채택하고 있습니다. RS-485 통신을 이용하여 최대 31 대까지 상위 통신 장비와 연결할 수 있습니다.

*MAX 31EA

1.2. 통신 배선

■ SD560E 와 상위 장비간 RS-485 통신 배선은 다음과 같습니다.

1.3. 통신 파라메터

■ 통신파라메터는 통신 조건을 설정하기 위한 것으로 내용은 다음과 같습니다.

통신 그룹 파라메터

파리메터	의미	설정 값	내용	초기 값
		0	표준 프로토콜	
		1	표준 프로토콜 + Check Sum	0
		2	MODBUS ASCI	
		3	MODBUS RTU	
		4	SYNC-Master	
601 4 B	Communication	5	SYNC-Slave	
COM.P	protocol	6	Omron PLC	
		7	Mitsubishi PLC	
		8	LG PLC	
		9	Yokogawa PLC	
		10	Keyence PLC - Modbus slave mode	
		11	Siemens PLC	
		0	9600bps	
	Baud rate	1	19200bps	
BAUD		2	38400bps	0
		3	57600bps	
		4	115200bps	
		NONE	패리티 없슴	0
PRTY	Parity bit	EVEN	짝수(우수) 패리티	
		ODD	홀수(기수) 패리티	
C DIT	Stop bit	1	1bit	0
3.DH	Stop Dit	2	2bits	
	Data longth	7	7bits	
U,LEIN	Data let igti i	8	8bits	
ADDR	Address	1~99	Address 설정	1
RP.TM	Response time	1~10	응답 시간	0
R.BS	Remote SP	-	싱크 운전시 SP	EUS(0.0%)

■ 통신 설정 후에는 반드시 전원을 껐다 켜야 적용됩니다.

PLC 그룹 파라메터

파리메터	의미	설정 값	내용	초기 값
SW.TM	송신지연시간	0~50	송신 지연 시간 [단위:ms]	10
RW.TM	수신대기시간	500~1000	수신대기시간 [단위:ms]	1000
M.Unit	최대연결개수	1~31	Programless 통신 최대 연결 개수	1
R.TYP	레지스터 타입	0~3	송/수신 데이터 영역	0
S.ADR	시작주소	0~FFFF	시작주소 설정	3E8
MAP.S	데이터맵 선택	0, 1	'0' : Master, '1' : Local	0
R0.01~R0.13	읽기영역 설정	1~200	읽기영역 주소 설정 [13Ea]	-
RW.01~RW.15	쓰기영역 설정	1~150	쓰기영역 주소 설정 [15Ea]	-

■ PLC 그룹은 통신 프로토콜(COM.P)에서 PLC 프로토콜 선택했을 경우 표시됩니다.

2.PC-LINK 통신

2.1. PC-LINK 통신 커맨드의 구성

■ 상위 통신 장비에서 SD560E으로 송신하는 통신 커맨드의 기본 형태는 다음과 같습니다.

PC-LINK 프로토콜

1	2	3	4	5	\bigcirc	8
STX	SD560E 의 주소	커맨드	,	커맨드의 규칙에 따른 데이터	CR	LF

PC-LINK+SUM 프로토콜

1	2	3	4	5	6	\bigcirc	8
STX	SD560E 의 주소	커맨드	,	커맨드의 규칙에 따른 데이터	SUM	CR	LF

① 통신 커맨드 시작 문자

ASCII 문자인 STX(Start of Text)로 코드값 0x02 를 갖으며 통신 커맨드의 시작을 표시.

② SD560E 의 주소

통신을 하고자 하는 SD560E 의 기기번호인 유니트 주소를 표시.

③ 커맨드

콤마(',')로 커맨드 및 데이터를 분리하는 구분자를 표시.

④ 구분자

콤마(',')로 커맨드 및 데이터를 분리하는 구분자를 표시.

⑤ 데이터부

통신 커맨드의 규칙에 따른 일정 형식의 문자열을 표시.

6 SUM

STX 다음 문자에서 SUM 이전까지의 각 문자를 ASCII 코드로 더하여 하위 1-byte(8-bit)를 ASCII 코드 2 자리(16 진수)로 변환한 것입니다.

⑦, ⑧ 종단 문자

통신 커맨드의 끝을 표시하는 ASCII 코드로 CR(0x0D), LF(0x0A)로 표시.

2.2. CHECK SUM

SUM 예제

NPV(D0001)에서 SP.SL(D0005)까지의 D-Register 를 읽는 경우 송신 : [STX]01RSD,05,0001[CR][LF] 송신(CheckSum 포함) : [STX]01RSD,05,0001C8[CR][LF]

■ 아래와 같이 01RSD,05,0001 의 각문자를 ASCII 코드로 모두 더한 16 진수 값은 2C8 이며, 그 중에서 하위 2 자리인 C8 을 CheckSum 으로 사용합니다.

ASCII .	코드 표
---------	------

상위 하위	0	1	2	3	4	5	6	7
0	NUL	DLE	SPACE	0	@	Р		Р
1	SOH	DC1	ļ	1	А	Q	а	q
2	STX	DC2	æ	2	В	R	b	r
3	ETX	DC3	#	3	С	S	с	s
4	EOT	DC4	\$	4	D	Т	d	t
5	ENQ	NAK	%	5	E	U	e	u
6	ACK	SYN	&	6	F	V	f	v
7	BEL	ETB	¢	7	G	W	g	w
8	BS	CAN	(8	Н	Х	h	х
9	HT	EM)	9	-	Y	÷	у
А	LF	SUB	*	•••	J	Z	j	z
В	VT	ESC	+	•••	К	[k	{
С	FF	FS	,	<	L	¥	-	-
D	CR	GS	-	=	М]	m	}
E	SO	RS		>	Ν	^	n	~
F	SI	US	/	?	0	-	0	DEL

2.3. 커맨드 종류

■ 통신 커맨드에는 SD560E의 정보를 읽어오는 자기 정보 커맨드와 D-Register의 값을 읽기 또는 쓰기 할 수 있는 Read/Write 커맨드가 있습니다.

자기 정보 커맨드

커맨드	내용
AMI	SD560E의 모델명 및 Version-Revision 표시

Read/Write 커맨드

커맨드	내용
RSD	D-Register의 연속 읽기(Read)
RRD	D-Register의 Random 읽기(Read)
WSD	D-Register의 연속 쓰기(Write)
WRD	D-Register의 Random 쓰기(Write)
STD	D-Register의 Random 등록
CLD	STD에서 등록된 D-Register의 Call

■ 각 커맨드는 64 개까지의 D-Register 를 읽거나 쓸 수 있으며, STD/CLD 의 경우 전원 Off 시 등록된 내용이 초기화 되므로 전원이 다시 On 되면 재등록 하여야 합니다.

2.3.1. RSD Command

■ D-Register 상의 일련의 데이터를 읽고자 할 때 사용하는 커맨드입니다.

송신 포맷

byte 수	1	2	3	1	2	1	4	2	1	1
내 용	STX	SD560E의 주소	RSD	,	개수	,	D-Reg.	SUM	CR	LF

수신 포맷

byte 수	1	2	3	1	2	1	4	1	
내 용	STX	SD560E의 주소	RSD	,	OK	,	Data - 1	,	

1	4	2	1	1
,	Data - n	SUM	CR	LF

- 개수:1~64
- Data: 16 진수의 소수점 없는 데이터

예제

■ PV.LO(D0022)에서 PV.HI(D0023)까지의 D-Register 를 읽는 경우

송신 : [STX]01RSD,02,0022[CR][LF] 송신 (CheckSum 포함) : [STX]01RSD,02,0022C8[CR][LF] ([STX]=0x02, [CR]=0x0d, [LF]=0x0a)

■ 수신된 PV.LO (D0022) 값이 50.0 이고, PV.HI(D0002) 값이 30.0 일 경우

수신	:	[STX]01RSD,OK,01F4,012C[CR][LF]
수신 (CheckSum 포함)	:	[STX] 01RSD,OK,01F4,012C19 [CR][LF]

- 수신된 16 진수 데이터의 PV 값을 화면에 디스플레이 하기 위해서 변환하는 과정
 - ① 10 진수로 변환 : 01F4(16 진수) → 500(10 진수)
 - ② 변환한 값에 0.1 을 곱한다.: 500 * 0.1 → 50.0

2.3.2. RRD Command

■ D-Register 상의 Random 한 데이터를 읽고자 할 때 사용하는 커맨드입니다.

송신 포맷

byte 수	1	2	3	1	2	1	4	1	
내용	STX	SD560E의 주소	RRD	,	개수	,	D-Reg 1	,	

1	4	2	1	1
,	Data - n	SUM	CR	LF

수신 포맷

byte 수	1	2	3	1	2	1	4	1	
내용	STX	SD560E의 주소	RRD	,	ОК	,	Data - 1	,	

1	4	2	1	1
,	Data - n	SUM	CR	LF

- 개수:1~64
- Data: 16 진수의 소수점 없는 데이터

예제

■ PV.LO(D0022), PV.HI(D0023)의 D-Register 를 읽는 경우

송신	:	[STX]01RRD,02,0022,0023[CR][LF]
송신(CheckSum 포함)	:	[STX]01RRD,02,0022,0023B3[CR][LF]

■ 수신된 PV.LO(D0022) 값이 50.0 이고, PV.HI(D0023) 값이 30.0 일 경우

수신	:	[STX]01RRD,OK,01F4,012C[CR][LF]
수신 (CheckSum 포함)	:	[STX]01RRD,OK,01F4,012C18[CR][LF]

2.3.3. WSD Command

■ D-Register 상의 일련한 데이터를 쓰고자 할 때 사용하는 커맨드입니다.

송신 포맷

byte 수	1	2	3	1	2	1	4	1	4
내 용	STX	SD560E의 주소	WSD	,	개수	,	D-Reg.	,	Data - 1

1	 1	4	2	1	1
,	 ,	Data - n	SUM	CR	LF

수신 포맷

byte 수	1	2	3	1	2	2	1	1
내 용	STX	SD560E의 주소	WSD	,	ОК	SUM	CR	LF

■ 개수:1~64

■ Data: 16 진수의 소수점 없는 데이터

예제

입력범위 IN.RH(D0603)와 IN.RL(D0604)에 데이터를 쓸 경우
 IN.RH 설정 : 1000 → 16 진수화(0x03E8)
 IN.RL 설정 :-100 → 16 진수화(0xFF9C)
 송신 : [STX]01WSD,02,0603,03E8,FF9C[CR][LF]
 송신(CheckSum 포함) : [STX]01WSD,02,0603,03E8,FF9C12[CR][LF]

2.3.4. WRD Command

■ D-Register 상의 Random 한 데이터를 쓰고자 할 때 사용하는 커맨드입니다.

송신 포맷

byte 수	1	2	3	1	2	1	4	1	4
내 용	STX	SD560E의 주소	WRD	,	개수	,	D-Reg 1	,	Data - 1

1	 1	4	1	4	2	1	1
,	 ,	D-Reg n	,	Data - n	SUM	CR	LF

수신 포맷

byte 수	1	2	3	1	2	2	1	1
내 용	STX	SD560E의 주소	WRD	,	ОК	SUM	CR	LF

- 개수:1~64
- Data: 16 진수의 소수점 없는 데이터

예제

입력범위 IN.RH(D0603)와 IN.RL(D0604)에 데이터를 쓸 경우
 IN.RH 설정 : 1000 → 16 진수화(0x03E8)
 IN.RL 설정 :-100 → 16 진수화(0xFF9C)
 송신 : [STX]01WRD,02,0603,03E8,0604,FF9C[CR][LF]
 송신(CheckSum 포함) : [STX]01WRD,02,0603,03E8,0604,FF9C07[CR][LF]

2.3.5. STD Command

■ SD560E 에 미리 원하는 D-Register 를 등록시키는 커맨드입니다.

송신 포맷

byte 수	1	2	3	1	2	1	4	1	4
내 용	STX	SD560E의 주소	STD	,	개수	,	D-Reg 1	,	D-Reg 2

1	 1	4	1	4	2	1	1
,	 ,	D-Reg n	,	Data - n	SUM	CR	LF

수신 포맷

byte 수	1	2	3	1	2	2	1	1
내 용	STX	SD560E의 주소	STD	,	OK	SUM	CR	LF

■ 개수:1~64

예제

■ NPV(D0001), NSP(D0002)을 등록하는 경우

송신

: [STX]01STD,02,0001,0002[CR][LF]

송신(CheckSum 포함) : [STX]01STD,02,0001,0002B5[CR][LF]

2.3.6. CLD Command

■ SD560E 에 STD 커맨드로 미리 등록한 D-Register 를 읽어오는 커맨드입니다.

송신 포맷

byte 수	1	2	3	2	1	1
내 용	STX	SD560E의 주소	CLD	SUM	CR	LF

수신 포맷

byt	ie 수	1	2	3	1	2	1	4	1	4
내	용	STX	SD560E의 주소	CLD	,	ОК	,	Data - 1	,	Data - 2

1	 1	4	1	4	2	1	1
,	 ,	Data - (n-1)	•	Data - n	SUM	CR	LF

■ Data: 16 진수의 소수점 없는 데이터

예제

송신 : [STX]01CLD[CR][LF] 송신(CheckSum 포함) : [STX]01CLD34[CR][LF]

2.3.7. AMI Command

■ SD560E의 정보를 확인할 때 사용하는 커맨드입니다.

송신 포맷

byte 수	1	2	3	2	1	1
내 용	STX	SD560E의 주소	AMI	SUM	CR	LF

수신 포맷

byte 수	1	2	3	1	2	1
내 용	STX	SD560E의 주소	AMI	,	OK	,

9	1	7	2	1	1
모델명	SPACE	Version-Revision	SUM	CR	LF

예제

SD560E의 정보를 확인할 경우	2	
송신	:	[STX]01AMI[CR][LF]
송신(CheckSum 포함)	:	[STX]01AMI38[CR][LF]
수신	:	[STX]01AMI,OK SL54:4848[SP]V00-R00[CR][LF]
	SD560E 의 정보를 확인할 경우 송신 송신(CheckSum 포함) 수신	SD560E의 정보를 확인할 경우 송신 : 송신(CheckSum 포함) : 수신 :

수신(CheckSum 포함) : [STX]01AMI,OK SL54:4848[SP]V00-R0006[CR][LF]

2.3.8. 에러 코드

■ 통신 중 Error 가 발생했을 경우 SD560E 에서 다음과 같이 송신합니다.

byte 수	1	2	2	2	2	1	1
내 용	STX	SD560E의 주소	NG	에러코드	SUM	CR	LF

에러코드의 내용

에러코드	내용	비고
01	존재하지 않는 커맨드 지정시	
02	존재하지 않는 D-Register 지정시	
04	데이터 설정 Error	유효한 데이터 이외의 문자를 사용 (데이터는 0~9,A~F의 16진수만 사용)
08	잘못된 Format 구성시	-지정한 커맨드 와 Format 이 다름 -지정한 개수와 설정된 개수가 다름
11	CheckSum Error	
12	Monitoring 커맨드 Error	지정된 Monitoring 커맨드가 없음
00	기타 Error 발생시	

3.MODBUS 통신

3.1. MODBUS 통신 커맨드의 구성

■ MODBUS 통신은 ASCII와 RTU 두 가지 모드가 있습니다.

데이터 Format

내 용	ASCII	RTU
통신선두문자	:(콜론)	없음
통신종단문자	[CR][LF]	없음
데이터길이	7-bit(고정)	8-bit(고정)
데이터형식	ASCII	Binary
에러 검출	LRC	CRC-16
	(Longitudinal Redundancy Check)	(Cyclic Redundancy Check)
데이터시간간격	1초 이하	24-bit 시간 이하

■ 프레임 구성은 아래와 같습니다.

Modbus ASCII

선두문자	통신주소	기능코드	데이터	LRC Check	종단문자
1문자	2문자	2문자	N 문자	2문자	2문자(CR+LF)

Modbus RTU

선두문자	통신주소	기능코드	데이터	CRC Check	종단문자
없음	8-bit	8-bit	N * 8-bit	16-bit	없음

N : 16 진수 데이터 개수

3.2. 통신 기능 코드

■ Modbus 통신 기능코드는 D-Register 내용을 Read/Write 할 수 있는 기능코드와 루프백(Loop-Back) 검출 기능 코드로 구성되어 있습니다.

기능코드	내 용
03	D-Register의 연속 읽기
06	단일 D-Register 쓰기
08	Diagnostics(Loop-Back Test)
16	D-Register 연속 쓰기

MODBUS 프로토콜 사용시 D-Register 는 0 부터 사용되기 때문에, D-Register 테이블에서 정의된 번호에서 1 을 뺀 번호를 적용해야만 합니다.

3.2.1. 기능 코드 - 03

■ 기능코드 - 03 은 연속된 D-Register 의 내용을 최대 64 개까지 읽을 수 있습니다.

송신 포맷

내 용	ASCII	RTU
통신선두문자	:(콜론)	없음
통신주소	2문자	8-bit
기능코드 - 03	2문자	8-bit
D-Register Hi	2문자	8-bit
D-Register Lo	2문자	8-bit
읽을 개수 Hi	2문자	8-bit
읽을 개수 Lo	2문자	8-bit
에러 검출	2문자	16-bit
통신종단문자	2문자(CR+LF)	없음

예제

■ PV.LO(D0022)에서 PV.HI(D0023)까지의 D-Register 를 읽는 경우

 MODBUS ASCII
 :
 :010300150002FA[CR][LF]

 MODBUS RTU
 :
 010300150002C40B

D-Register 테이블에 정의된 번호에서 1 을 뺀 번호를 적용해야 됩니다.

수신 포맷

내 용	ASCII	RTU
통신선두문자	:(콜론)	었음
통신주소	2문자	8-bit
기능코드 - 03	2문자	8-bit
데이터 byte 수	2문자	8-bit
데이터 - 1 Hi	2문자	8-bit
데이터 - 1 Lo	2문자	8-bit
데이터 - n Hi	2문자	8-bit
데이터 - n Lo	2문자	8-bit
에러 검출	2문자	16-bit
통신종단문자	2문자(CR+LF)	없음

예제

■ 수신된 PV.LO(D0022) 값이 25.0 이고, PV.HI(D0023) 값이 100.0 일 경우

MODBUS ASCII : :01030400FA03E813[CR][LF]

MODBUS RTU : 01030400FA03E8DABC

3.2.2. 기능 코드 - 06

■ 기능코드 - 06 은 단일 D-Register 내용을 기입 할 수 있습니다.

송신 포맷

내 용	ASCII	RTU
통신선두문자	:(콜론)	없음
통신주소	2문자	8-bit
기능코드 - 06	2문자	8-bit
D-Register Hi	2문자	8-bit
D-Register Lo	2문자	8-bit
쓰기 데이터 Hi	2문자	8-bit
쓰기 데이터 Lo	2문자	8-bit
에러 검출	2문자	16-bit
통신종단문자	2문자(CR+LF)	없음

예제

■ 입력 범위 설정을 위한 IN.RH(D0603)에 '1000'를 설정 할 경우

MODBUS ASCII : :010600C8003294[CR][LF]

MODBUS RTU : 010600C8003289E1

D-Register 테이블에 정의된 번호에서 1 을 뺀 번호를 적용해야 됩니다.

수신 포맷

내 용	ASCII	RTU
통신선두문자	:(콜론)	없음
통신주소	2문자	8-bit
기능코드 - 06	2문자	8-bit
D-Register Hi	2문자	8-bit
D-Register Lo	2문자	8-bit
쓰기 데이터 Hi	2문자	8-bit
쓰기 데이터 Lo	2문자	8-bit
에러 검출	2문자	16-bit
통신종단문자	2문자(CR+LF)	없음

예제

■ 정상적으로 설정되었을 경우, 아래와 같이 수신됩니다.

MODBUS ASCII : :0106025B03E8B1[CR][LF]
3.2.3. 기능 코드 - 08

■ 기능코드 - 08은 자기 진단용으로 사용됩니다.

송신 포맷

내 용	ASCII	RTU
통신선두문자	:(콜론)	없음
통신주소	2문자	8-bit
기능코드 - 08	2문자	8-bit
진단코드 Hi	2문자	8-bit
진단코드 Lo	2문자	8-bit
데이터 Hi	2문자	8-bit
데이터 Lo	2문자	8-bit
에러 검출	2문자	16-bit
통신종단문자	2문자(CR+LF)	없음

예제

■ 아래와 같은 프레임을 자기 진단용으로 송신 했을 경우

MODBUS ASCII	:	:01080000002F5[CR][LF]
MODBUS RTU	:	0108000000261CA

수신 포맷

내 용	ASCII	RTU
통신선두문자	:(콜론)	없음
통신주소	2문자	8-bit
기능코드 - 08	2문자	8-bit
진단코드 Hi	2문자	8-bit
진단코드 Lo	2문자	8-bit
데이터 Hi	2문자	8-bit
데이터 Lo	2문자	8-bit
에러 검출	2문자	16-bit
통신종단문자	2문자(CR+LF)	없음

예제

■ 정상적으로 설정되었을 경우, 아래와 같이 수신됩니다.

 MODBUS ASCII
 :
 :01080000002F5[CR][LF]

 MODBUS RTU
 :
 0108000000261CA

3.2.4. 기능 코드 - 16

■ 기능코드 - 16은 일련의 D-Register 의 내용을 최대 64 개까지 기입 할 수 있습니다.

송신 포맷

내 용	ASCII	RTU
통신선두문자	:(콜론)	없음
통신주소	2문자	8-bit
기능코드 - 16	2문자	8-bit
D-Register Hi	2문자	8-bit
D-Register Lo	2문자	8-bit
쓰기 개수 Hi	2문자	8-bit
쓰기 개수 Lo	2문자	8-bit
데이터 byte 수	2문자	8-bit
데이터 - 1 Hi	2문자	8-bit
데이터 - 1 Lo	2문자	8-bit
데이터 - n Hi	2문자	8-bit
데이터 - n Lo	2문자	8-bit
에러 검출	2문자(CR+LF)	없음
통신종단문자	2문자	16-bit

예제

■ 입력범위 설정을 위하여 IN.RH(D0603)에 '1000'을, IN.RL(D0604)에 '-100'을 설정 할 경우

MODBUS ASCII : :0110025B00020403E8FF9C06[CR][LF]

MODBUS RTU : 0110025B000204000100326FA9

수신 포맷

내 용	ASCII	RTU
통신선두문자	:(콜론)	없음
통신주소	2문자	8-bit
기능코드 - 16	2문자	8-bit
D-Register Hi	2문자	8-bit
D-Register Lo	2문자	8-bit
쓰기 개수 Hi	2문자	8-bit
쓰기 개수 Lo	2문자	8-bit
에러 검출	2문자	16-bit
통신종단문자	2문자(CR+LF)	없음

예제

■ 정상적으로 설정되었을 경우, 아래와 같이 수신됩니다.

MODBUS ASCII : :0110025B000290[CR][LF] MODBUS RTU : 0110025B000231A3

4. Programless 통신

4.1. 개요

SD560E는 적용된 프로토콜의 PLC와 별도의 프로그램 구성 없이 파라메터의 읽기/쓰기를 통해 컨트롤러를 제어 할 수 있습니다. 또한 Slave 모듈은 별도의 설정없이 Master 모듈의 정보를 받아 Master 모듈과 동일한 데이터 정보를 PLC로 전송합니다.

4.2. 통신 설정

4.2.1. 프로토콜 설정

SD560E Series 에 내장된 PLC 프로토콜로는 OMRON, MITSUBISHI, LG, YOKOGAWA, KEYENCE, SIEMENS 가 있습니다. 해당 PLC 는 별도의 Ladder Program 없이 컨트롤과 통신이 가능합니다.

그룹	파라메터	설정치	내 용
	P.onr	OMRON SYSMAC 프로토콜	
		P.ALE	MITSUBISHI MELSEC Q/QnACPU 프로토콜
rr_==	r _ I0	P.LG	LG MASTER-K(XGK, XGB, XBC) 프로토콜
U.L ON	n Long <u>P</u> ! P!	P.YĽo	YOKOGAWA FA-M3 프로토콜
		P.ĽEn	KEYENCE MODBUS RTU 프로토콜
		P.ST E	SIEMENS MODBUS RTU 프로토콜

4.2.2. 통신속도, 패러티, 스톱비트, 데이터 길이 설정

■ 통신을 위한 속도, 패러티 비트, 스톱 비트, 데이터 길이를 설정합니다.

그룹	파라메터	설정치		내 용
		9600	9600	
		19200	19200	
	ЬЯIJЯ	38.4£	38400(초기 값)	통신 속도 설정
ū£onī -		57.6 <i>2</i>	57600	
		I IS.22	115200	
	РгЕУ	nonE	NONE(초기 값)	통신 패리티 설정
		EHEn	EVEN	
		odd	ODD	
	5.67 E	1, 2	통신 정지 비트 설정(초기값:1)	
	dLEn	7, 8	통신 데이터 길이 실	설정(초기값:8)

4.2.3. 통신 주소 설정

■ SD560E Series 는 '1 ~ 99까지의 주소를 설정할 수 있으며, 주소가 '1'인 제품이 Master 로 동작하게 됩니다. PLC 통신을 위해 Master 유닛은 반드시 필요합니다.

그룹	파라메터	설정치	내용
ū.C o Ā	Rddr	l~99	통신 주소 설정(초기 값 : 1)

4.2.4. 송신 지연시간, 수신 대기시간

■ 송신 지연시간과 수신 대기시간을 설정합니다. 송신 지연시간은 SD560E 가 전송하는 데이터에 대한 지연시간을 의미하며, 수신 대기시간은 PLC 로부터의 응답을 기다리는 시간을 의미합니다.

그룹	파라메터	설정치	내용	
רחו ר	5 <u>4</u> £ñ	0~50	송신 지연시간(초기 값 : 10ms)	
		500~ 1000	수신 대기시간(초기 값 : 1000ms)	

4.2.5. 최대 연결 개수

■ 최대 연결 개수는 PLC와 연결되는 SD560E의 개수를 의미하므로, 연결되는 모듈의 개수에 맞추어 설정합니다.

그룹	파라메터	설정치	내용
G.PL C	ก็ไม่กอ	E~I	최대 연결 개수 설정(초기 값 : 1)

4.2.6. 레지스터 타입 설정

■ 레지스터 타입을 설정합니다. 이 파라메터는 PLC의 송/수신 메모리 영역을 설정합니다.

그룹		서저희	내	용
	파다메리	실성지	MITSUBISHI PLC	그 외 PLC
G.PLC		0	D 레지스터	
	_ L U O	1	W 레지스터	
	ר.ב פר	2	R 레지스터	D 데시스니 포칭
		3	ZR 레지스터	

4.2.7. 시작 주소 설정

■ PLC 메모리 영역의 시작주소를 설정합니다. 시작주소 설정에 따라 PLC 영역에 30 워드씩 고정적으로 할당합니다.

그룹	파라메터	설정치	내 용
G.PL C	5.Rdr	O~FFFF	시작 주소 설정(초기 값 : 03E8[1000])

제품의 시작주소가 0일 때

제품의 시작주소가 100[0064]일 때

■ SD560E(Slave) 시작 주소 : 시작주소(Master) + (SD560E 주소 - 1) *30

4.2.8. 데이터 맵 설정

■ 데이터 맵 설정은 마스터 모듈에 설정된 영역의 정보를 슬레이브 모듈에 복사하여 사용하는 'MASTER' 설정과 개별 SD560E 에 설정된 정보를 이용하는 'LOCAL'설정이 있습니다.

그룹	파라메터	설정치	내용	
G.PLC ARP.S	-005	<u> 785</u> 7	MASTER 설정(초기 값)	
	Lo[ī	LOCAL 설정		

- 데이터 맵 설정이 MASTER 라면 슬레이브 모듈은 마스터 모듈로부터 송신 지연 시간, 수신 대기 시간, 레지스터 타입, 시작주소 및 데이터 맵 정보를 전송받아 마스터 모듈과 동일한 데이터를 PLC 메모리 영역에 기입합니다.
- MASTER 로 부터 전송 받은 파라메터 정보는 G.NPL 그룹에서 확인이 가능합니다.

그룹	파라메터	설정치	내용
<u>G</u> nPL	n.5 <u>4</u> E	-	송신 지연시간 정보
	nrŸŁ	-	수신 대기시간 정보
	<u> </u>	-	레지스터 타입 정보
	n.5Rd	-	시작 주소 정보
	no.0 ~ no. 3	-	읽기 영역 주소 정보[13EA]
	ה <u>ש</u> ם ו ~ ה <u>ש</u> 15	-	쓰기 영역 주소 정보[15EA]

■ G.NPL 그룹은 읽기 전용 파라메터 입니다.

■ Master 설정은 반드시 같은 제품군(SP, ST, SD, SL)으로만 구성되어야 정상적인 동작을 수행합니다.

NOTE

4.2.9. 메모리 영역 설정

- PLC 메모리 영역으로 전송할 읽기 전용 파라메터 13EA, 읽기/쓰기 파라메터 15EA를 설정합니다.
- Upload/download 설정 테이블을 참조하여 사용자가 원하는 데이터 맵을 구성할수 있으며, 설정된 데이터 맵 정보를 이용하여 PLC 메모리영역에 전송하게 됩니다.

그룹	파라메터	설정치	내 용
	r o.0 ~ r o. 3	I~200	읽기 영역 주소 설정[13EA]
UFLL	ר <u>יי</u> ם ו ~ ר יי ו5	I~ I50	쓰기 영역 주소 설정[15EA]

예제

■ RO.01 의 값을 151[NPV]]에서 161[PROC.TIME]을 설정하게 되면 PLC 의 RO.01 영역에 PROC.TIME 값을 전송하게 됩니다.

SD560E 데이터 맵 초기 설정 표

파라메터	설정 범위	초기값	
RO.01	OFF[설정 하지 않음], 1 ~ 200	151	NPV
RO.02	OFF[설정 하지 않음], 1 ~ 200	152	NSP
RO.03	OFF[설정 하지 않음], 1 ~ 200	OFF	-
RO.04	OFF[설정 하지 않음], 1 ~ 200	OFF	-
RO.05	OFF[설정 하지 않음], 1 ~ 200	OFF	-
RO.06	OFF[설정 하지 않음], 1 ~ 200	OFF	-
RO.07	OFF[설정 하지 않음], 1 ~ 200	OFF	-
RO.08	OFF[설정 하지 않음], 1 ~ 200	159	ALSTS
RO.09	OFF[설정 하지 않음], 1 ~ 200	OFF	-
RO.10	OFF[설정 하지 않음], 1 ~ 200	OFF	-
RO.11	OFF[설정 하지 않음], 1 ~ 200	OFF	-
RO.12	OFF[설정 하지 않음], 1 ~ 200	OFF	-
RO.13	OFF[설정 하지 않음], 1 ~ 200	OFF	-
RW.01	OFF[설정 하지 않음], 1 ~ 150	16	Alarm Value 1
RW.02	OFF[설정 하지 않음], 1 ~ 150	17	Alarm High Value 1
RW.03	OFF[설정 하지 않음], 1 ~ 150	18	Alarm Low Value 1
RW.04	OFF[설정 하지 않음], 1 ~ 150	19	Alarm Value 2
RW.05	OFF[설정 하지 않음], 1 ~ 150	20	Alarm High Value 2
RW.06	OFF[설정 하지 않음], 1 ~ 150	21	Alarm Low Value 2
RW.07	OFF[설정 하지 않음], 1 ~ 150	65	ALBS
RW.08	OFF[설정 하지 않음], 1 ~ 150	OFF	-
RW.09	OFF[설정 하지 않음], 1 ~ 150	OFF	-
RW.10	OFF[설정 하지 않음], 1 ~ 150	OFF	-
RW.11	OFF[설정 하지 않음], 1 ~ 150	OFF	-
RW.12	OFF[설정 하지 않음], 1 ~ 150	OFF	-
RW.13	OFF[설정 하지 않음], 1 ~ 150	OFF	-
RW.14	OFF[설정 하지 않음], 1 ~ 150	OFF	-
RW.15	OFF[설정 하지 않음], 1 ~ 150	OFF	-

UPLOAD/DOWNLOAD 설정 테이블

	설정값	파라메터		
	16	Alarm Value 1	D0406	
etting	17	Alarm High Value 1	D0421	
oad Sc	18	Alarm Low Value 1	D0426	
ownla	19	Alarm Value 2	D0407	
d&D	20	Alarm High Value 2	D0422	
Uploa	21	Alarm Low Value 2	D0427	
	65	ALBS	D0621	
	151	NPV	D0001	
	152	NSP	D0002	
tting	159	ALSTS	D0014	
ad Se	167	HIGH VALUE	D0038	
Uplo	168	LOW VALUE	D0039	
	169	KEEP TIME	D0040	
	151	NPV	D0001	

PLC 레지스터 영역 테이블

	SD560E 주소	파라메티	1
DACIC	시작 주소 + (SD560E 주소 - 1) * 30 + 0	트리거(Trigger)	READ/WRITE
BASIC	시작 주소 + (SD560E 주소 - 1) * 30 + 1	통신상태 플래그(STS.F)	READ
	시작 주소 + (SD560E 주소 - 1) * 30 + 2	RO.01	READ
	시작 주소 + (SD560E 주소 - 1) * 30 + 3	RO.02	READ
	시작 주소 + (SD560E 주소 - 1) * 30 + 4	RO.03	READ
	시작 주소 + (SD560E 주소 - 1) * 30 + 5	RO.04	READ
	시작 주소 + (SD560E 주소 - 1) * 30 + 6	RO.05	READ
R	시작 주소 + (SD560E 주소 - 1) * 30 + 7	RO.06	READ
E A	시작 주소 + (SD560E 주소 - 1) * 30 + 8	RO.07	READ
D	시작 주소 + (SD560E 주소 - 1) * 30 + 9	RO.08	READ
	시작 주소 + (SD560E 주소 - 1) * 30 + 10	RO.09	READ
	시작 주소 + (SD560E 주소 - 1) * 30 + 11	RO.10	READ
	시작 주소 + (SD560E 주소 - 1) * 30 + 12	RO.11	READ
	시작 주소 + (SD560E 주소 - 1) * 30 + 13	RO.12	READ
	시작 주소 + (SD560E 주소 - 1) * 30 + 14	RO.13	READ
	시작 주소 + (SD560E 주소 - 1) * 30 + 15	RW.01	READ/WRITE
	시작 주소 + (SD560E 주소 - 1) * 30 + 16	RW.02	READ/WRITE
	시작 주소 + (SD560E 주소 - 1) * 30 + 17	RW.03	READ/WRITE
D	시작 주소 + (SD560E 주소 - 1) * 30 + 18	RW.04	READ/WRITE
E	시작 주소 + (SD560E 주소 - 1) * 30 + 19	RW.05	READ/WRITE
А	시작 주소 + (SD560E 주소 - 1) * 30 + 20	RW.06	READ/WRITE
D	시작 주소 + (SD560E 주소 - 1) * 30 + 21	RW.07	READ/WRITE
& W	시작 주소 + (SD560E 주소 - 1) * 30 + 22	RW.08	READ/WRITE
R	시작 주소 + (SD560E 주소 - 1) * 30 + 23	RW.09	READ/WRITE
	시작 주소 + (SD560E 주소 - 1) * 30 + 24	RW.10	READ/WRITE
T	시작 주소 + (SD560E 주소 - 1) * 30 + 25	RW.11	READ/WRITE
E	시작 주소 + (SD560E 주소 - 1) * 30 + 26	RW.12	READ/WRITE
	시작 주소 + (SD560E 주소 - 1) * 30 + 27	RW.13	READ/WRITE
	시작 주소 + (SD560E 주소 - 1) * 30 + 28	RW.14	READ/WRITE
	시작 주소 + (SD560E 주소 - 1) * 30 + 29	RW.15	READ/WRITE

4.3. 데이터 처리와 통신 상태

BASIC 영역의 파라메터를 이용하여 PLC 와의 통신 상태를 확인 할수 있으며, 트리거를 이용하여 데이터 읽기 또는 쓰기가 가능합니다.

파라메터	설정치	내 용		
트리거(TRG)	0	모니터	:	READ 영역 데이터를 읽습니다.
	1	설정	:	SD560E 에 데이터를 쓰기합니다.
	2	설정값 모니터 : READ&WRITE 영역 데이터를 읽습니다.		READ&WRITE 영역 데이터를 읽습니다.
통신 상태 플래그(STS.F)	0, 1	통신 상태를 표시합니다.		

4.3.1. PLC 와의 통신 절차

■ 트리거가 '0'일 때 동작

① PLC에서 트리거를 '업으로 쓰기 하면 NOVA500E 에서 READ 영역(RO.01~RO.13)의 데이터를 PLC로 쓰기하고, 읽어온 통신 상태 플래그를 반전(0->1, 1->0)하여 PLC로 쓰기를 합니다.

■ 트리거가 '1'일 때 동작

 PLC에서 트리거를 '1'로 쓰기 하면 PLC에서 READ&WRITE 영역(RW.01~RW.15)의 데이터를 SD560E 로 쓰기를 합니다.

② 트리거를 '1'에서 '0'으로 설정하고, 읽어온 통신상태 플래그 값을 반전(0->1, 1->0)하여 PLC로 쓰기합니다.

SD560E 와 PLC의 설정 값이 동기화가 되지 않은 경우, 현재 운용 중인 SD560E 의 설정 값에 영향을 주게 되므로 설정 값 쓰기를 수행하기 전에 READ&WRITE 영역이 동기화가 되어 있는지 확인해야 합니다. ■ 트리거가 '2'일 때 동작

 ① PLC 에서 트리거를 '2'로 쓰기 하면 SD560E 에서 READ&WRITE 영역(RW.01~RW.15) 데이터를 PLC 로 쓰기합니다.

② 트리거 값을 '2'에서 '0'으로 설정하고, 읽어온 통신 상태 플래그 값을 반전(0->1, 1->0)하여 PLC로 쓰기합니다.

PLC 와의 최초 통신을 하게 되면 READ&WRITE 영역이 동기화 전 상태이므로 READ&WRITE 영역 동기화를 위해 최초 연결 시 트리거를 '2'(설정 값 모니터)로 설정하여 동기화 작업을 반드시 수행하여야 합니다.

4.4. OMRON PLC 와의 연결

4.4.1. 연결 구성도

■ 다음은 OMRON SYSMAC CI1M CPU11 과 Programless 통신을 위한 구성의 예입니다.

4.4.2. 통신 배선

■ SD560E 와 CJ1W-SCU41-V1 통신 모듈을 아래 그림과 같이 배선합니다.

4.4.3. SD560E 설정

- Programless 통신을 위해 SD560E Series 의 통신 관련 파라메터 및 PLC 관련 파라메터를 설정합니다.
- '4. 통신 설정'을 참조하여 아래와 같이 설정합니다.
 - G.COM 에서 프로토콜과 통신 주소를 설정합니다. 나머지 파라메터는 기본 설정을 이용합니다.
 통신 프로토콜은 '4.2.1 프로토콜 설정'을 참조하여 PLC 종류에 맞게 설정합니다. 통신 주소 설정은
 MASTER 모듈의 주소를 '1'로 설정하고 나머지 모듈의 주소는 '2'부터 설정합니다.
 통신 프로토콜 설정(COM.P): PLC 종류에 따라 설정
 - ▶ 통신 속도 (BAUD): 38400bps
 - ▶ 패리티 비트(PRTY):None
 - ▶ 스톱 비트(S.BIT): 1
 - ▶ 데이터 길이(D.LEN):8
 - ▶ 통신 주소(ADDR):1
 - 2) G.PLC 에서 최대 연결 개수를 설정합니다. 나머지 파라메터는 기본 설정을 이용합니다.

최대 연결 개수는 현재 연결된 SD560E Series의 가장 마지막 통신 주소로 설정하고 데이터 맵 설정은 'MASTER'로 설정합니다.

- ▶ 송신 지연 시간(SW.TM): 10(msec)
- ▶ 수신 대기 시간(RW.TM): 1000(msec)
- ▶ 최대 연결 개수(MU.NO): SD560E Series의 연결 개수
- ▶ 레지스터 타입(R.TYP):0
- ▶ 시작주소 설정(S.ADR): 1000
- ▶ 데이터 맵 설정(MAP.S) : MASTER

4.4.4. PLC 설정

■ PLC 연결하기

- ① PC 와 OMRON PLC 와 연결후 CX-Programmer 를 실행합니다.
- ② 메뉴에서 'PLC -> Auto Online'를 선택합니다.
- ③ PLC 와 정상적으로 연결되면 Upload 를 진행합니다.

■ 통신 모듈의 통신 설정

- ① 메뉴에서 'PLC -> Operating Mode -> Program'을 선택합니다.
- ② 'Project'창에서 'l/OTable'을 더블 클릭합니다.
- ③ 'PLC IO Table' 창에서 Main Rack을 더블 클릭합니다.
- ④ Serial Communications Unit 을 마우스 오른쪽 버튼을 클릭하여 Softerware Switches 를 선택합니다.

⑤ Serial CommS Unit Software Switches 창에서 해당 Port 에서 통신 설정을 합니다. (SD560E 설정 참조)

ltem		설경	성 값
Communication	Baud	38400	SD560E 기본값
Settings	Format	1, 8, 1, N	SD560E 기본값
	Mode	Default(Host Link)	SD560E 기본값

⑥ 설정이 완료되었으면 Serial CommS Unit Software Switches 창의 메뉴에서 'Options -> Transfer to PLC'를 선택하여 설정을 저장합니다.

4.4.5. 데이터 모니터링 및 설정

■ SD560E 데이터 모니터링

- ① CX-Programmer 를 이용하여 PLC 에 접속합니다.
- ② 'Project'창에서 'Memory'를 더블 클릭합니다.
- ③ 'PLC Memory' 창에서 'D' 선택 후 Monitor 를 클릭힙니다.
- ④ 해당 레지스터 영역에서부터 제품 별 30 워드씩 데이터를 확인할 수 있습니다.
- 데이터 맵 설정의 기본 값 기준으로 레지스터 영역의 데이터는 아래 표와 같습니다.

ADDRESS.1	ADDRESS.2	ADDRESS.3	파라메터	값
D1000	D1030	D1060	트리거	0
D1001	D1031	D1061	통신 상태 플래그	1,0 반복
D1002	D1032	D1062	NPV	-
D1009	D1039	D1069	ALSTS	-
D1010	D1040	D1070	DISTS	-
D1015	D1045	D1075	Alarm Value 1	-
D1016	D1046	D1076	Alarm High Value 1	-
D1017	D1047	D1077	Alarm Low Value 1	-
D1018	D1048	D1078	Alarm Value 2	-
D1019	D1049	D1079	Alarm High Value 2	-
D1020	D1050	D1080	Alarm Low Value 2	-
D1021	D1051	D1081	ALBS	-

R0 영역 ______, RW 영역 ______

■ SD560E 설정 값 모니터링

① 트리거 영역(D1000)에 해당하는 레지스터에 값 '2(설정 값 읽기)'를 입력합니다.

② 트리거가 '2'로 변경된 후 RW 영역에 데이터쓰기 작업이 완료되면 트리거는 '0'으로 변경되고 작업이 완료됩니다.

③ RW 영역(D1015~D1029)의 값을 확인합니다.

■ SD560E 설정 값 쓰기를 통한 알람 설정값 변경

- ① Alarm Value 1 (D1045)에 해당하는 레지스터에 설정 값 '50'을 입력합니다.
- ③ 트리거(D1000)에 해당하는 레지스터에 값 '1(설정 값 쓰기)'을 입력합니다.
- ⑤ 트리거가 '1'로 변경된 후 PLC 에서 SD560E 로 쓰기가 완료되면 트리거는 '0'로 변경되고 작업이 완료됩니다.

4.5. MITSUBISHI PLC 와의 연결

4.5.1. 연결 구성도

■ 다음은 MITSUBISHI Melsec Q Series 와 Programless 통신을 위한 구성의 예입니다.

4.5.2. 통신 배선

■ SD560E 와 QJ71C24N-R4 를 아래 그림과 같이 배선합니다.

4.5.3. SD560E 설정

■ 4.4.3 SD560E 설정 참조.

4.5.4. PLC 설정

■ PLC 연결하기

- ① PC 와 Melsec Q 시리즈 CPU 와 연결후 GX-Works2 를 실행합니다.
- ② 메뉴에서 'Online -> Read from PLC'를 선택합니다.
- ③ QCPU(Q mode)를 선택하고 'OK'를 클릭합니다.
- ④ 'Online Data Operation'창이 뜨면 'Execute'버튼을 클릭하여 데이터를 읽어 옵니다.
- ⑤ 업로드가 완료되면 창을 닫습니다.

■ 통신 모듈의 통신 설정

① 'Navigation'창에서 'Intelligent Function Module'을 더블 클릭합니다.

- ② 모듈 목록에서 해당'QJ71C24N-R4'모듈을 더블클릭하고 아래 항목에서 'Switch Setting'을 더블클릭합니다.
- ③ SD560E 와 연결된 채널의 통신 옵션 파라메터를 아래와 같이 설정합니다. (SD560E 설정 참조)

ltem		설경	성 값
	Operation setting	Independent	
	Data Bit	8	SD560E 기본값
	Parity Bit	None	SD560E 기본값
Transmission	Even/Odd Parity	해당 없음	
setting	Stop Bit	1	SD560E 기본값
	Sum check code	Exist	-
	Online Change	Enable	-
	Setting modifications	Enable	-
Communication rate setting		38400bps	SD560E 기본값
Communicatio	on protocol setting	MC protocol(format 4)	-
Station num	ber setting(0-31)	0	

④ 설정이 완료되었으면 메뉴에서 'Online -> Write to PLC'를 선택합니다.

⑤ Online data Operation 창이 뜨면 'Intelligent Function Modul탭을 선택하고 모듈 목록에서 해당 모듈을 체크 합니다.

⑤ 'Execute'버튼을 클릭하여 설정을 완료합니다.

4.5.5. 데이터 모니터링 및 설정

■ SD560E 데이터 모니터링

① GS Works 2를 이용하여 PLC 에 접속합니다.

- ② 메뉴에서 'Online -〉 Monitor -〉 Device Buffer Memory Batch'를 선택합니다.
- ③ Device Buffer Memory Batch 창에서 'Device Name'란에 'D1000'을 입력합니다.
- ④ 해당 레지스터 영역에서부터 제품 별 30 워드씩 데이터를 확인할 수 있습니다.
- 데이터 맵 설정의 기본 값 기준으로 레지스터 영역의 데이터는 아래 표와 같습니다.

ADDRESS_1	ADDRESS.2	ADDRESS.3	파라메터	값
D1000	D1030	D1060	트리거	0
D1001	D1031	D1061	통신 상태 플래그	1,0 반복
D1002	D1032	D1062	NPV	-
D1009	D1039	D1069	ALSTS	-
D1010	D1040	D1070	DISTS	-
D1015	D1045	D1075	Alarm Value 1	-
D1016	D1046	D1076	Alarm High Value 1	-
D1017	D1047	D1077	Alarm Low Value 1	-
D1018	D1048	D1078	Alarm Value 2	-
D1019	D1049	D1079	Alarm High Value 2	-
D1020	D1050	D1080	Alarm Low Value 2	-
D1021	D1051	D1081	ALBS	-

R0 영역 ______, RW 영역 ____

■ SD560E 설정 값 모니터링

① 트리거 영역(D1000)에 해당하는 레지스터에 값 '2(설정 값 읽기)'를 입력합니다.

- ② 트리거가 '2'로 변경된 후 RW 영역에 데이터쓰기 작업이 완료되면 트리거는 '0'으로 변경되고 작업이 완료됩니다.
- ③ RW 영역(D1015~D1029)의 값을 확인합니다.

■ SD560E 설정 값 쓰기를 통한 알람 설정값 변경

- ① Alarm Value 1 (D1045)에 해당하는 레지스터에 설정 값 '50'을 입력합니다.
- ③ 트리거(D1000)에 해당하는 레지스터에 값 '1(설정 값 쓰기)'을 입력합니다.
- ⑤ 트리거가 '1'로 변경된 후 PLC에서 SD560E 로 쓰기가 완료되면 트리거는 '0'로 변경되고 작업이 완료됩니다.

4.6. LG PLC 와의 연결

4.6.1. 연결 구성도

■ 다음은 LS PLC(XBM-DR16S)와 Programless 통신을 위한 구성의 예입니다.

4.6.2. 통신 배선

■ SD560E 와 XBM-DR16S를 아래 그림과 같이 배선합니다.

4.6.3. SD560E 설정

■ 4.4.3 SD560E 설정 참조.

4.6.4. PLC 설정

■ PLC 연결하기

① PC와 LS PLC를 연결 후 XG5000 을 실행합니다.

② 메뉴에서 '프로젝트 -> PLC 로부터 열기'를 선택합니다.

③ 접속 옵션 설정을 연결 방식에 맞게 설정 후 접속을 클릭합니다.

■ 통신 모듈의 통신 설정

① XG5000 의 프로젝트 창에서 '네트워크 구성 -> 기본 네트워크 -> NewPLC[BOSO 내장 Cnet]'을 선택합니다.

ltem		설정 값	
	통신 속도	38400	SD560E 기본값
접속 설정	데이터 비트	8	SD560E 기본값
	정지 비트	1	SD560E 기본값
	패리티 비트	NONE	SD560E 기본값

② 기본 설정 창에서 해당 채널을 아래와 같이 설정합니다.

④ 설정이 완료되었으면 메뉴에서 '온라인 -〉 쓰기'를 선택합니다.

⑤ 쓰기 창에서 확인을 클릭하여 PLC로 설정을 쓰기하고 통신 설정을 완료합니다.

4.6.5. 데이터 모니터링 및 설정

■ SD560E 데이터 모니터링

- ① GX5000를 이용하여 PLC에 접속합니다.
- ② 메뉴에서 '모니터 -> 디바이스 모니터'를 선택합니다.
- ④ 디바이스 모니터 창에서 D 영역을 선택하고 해당 레지스터를 확인합니다.
- 데이터 맵 설정의 기본 값 기준으로 레지스터 영역의 데이터는 아래 표와 같습니다.

ADDRESS_1	ADDRESS.2	ADDRESS.3	파라메터	값
D1000	D1030	D1060	트리거	0
D1001	D1031	D1061	통신 상태 플래그	1,0 반복
D1002	D1032	D1062	NPV	-
D1009	D1039	D1069	ALSTS	-
D1010	D1040	D1070	DISTS	-
D1015	D1045	D1075	Alarm Value 1	-
D1016	D1046	D1076	Alarm High Value 1	-
D1017	D1047	D1077	Alarm Low Value 1	-
D1018	D1048	D1078	Alarm Value 2	-
D1019	D1049	D1079	Alarm High Value 2	-
D1020	D1050	D1080	Alarm Low Value 2	-
D1021	D1051	D1081	ALBS	-

R0 영역 ______, RW 영역 ______

■ SD560E 설정 값 모니터링

① 트리거 영역(D1000)에 해당하는 레지스터에 값 '2(설정 값 읽기)'를 입력합니다.

② 트리거가 '2'로 변경된 후 RW 영역에 데이터쓰기 작업이 완료되면 트리거는 '0'으로 변경되고 작업이 완료됩니다.

③ 업로드된 RW 영역(D1015~D1029)의 값을 확인합니다.

■ SD560E 설정 값 쓰기를 통한 알람 설정값 변경

- ① Alarm Value 1 (D1045)에 해당하는 레지스터에 설정 값 '50'을 입력합니다.
- ③ 트리거(D1000)에 해당하는 레지스터에 값 '1(설정 값 쓰기)'을 입력합니다.
- ⑤ 트리거가 '1'로 변경된 후 PLC에서 SD560E 로 쓰기가 완료되면 트리거는 '0'로 변경되고 작업이 완료됩니다.

4.7. YOKOGAWA PLC 와의 연결

4.7.1. 연결 구성도

■ 다음은 YOKOGAWA PLC 와 Programless 통신을 위한 구성의 예입니다.

4.7.2. 통신 배선

■ SD560E 와 LC11-2F를 아래 그림과 같이 배선합니다.

4.7.3. SD560E 설정

■ 4.4.3 SD560E 설정 참조.

YOKOGAWA PLC의 데이터 영역은 '1'부터 시작하므로 SD560E 설정 시 시작주소는 '0'으로 설정하지 않도록 주의하시기 바랍니다.

4.7.4. PLC 설정

■ 통신 모듈의 설정

LC11-2F의 우측 커버를 열어 아래와 같이 설정합니다.

ltem		설정	값
SW1		38.4kbps(9)	SD560E 기본값
SW2	Character Length	8bit(ON)	-
	Check Sum	YES(ON)	-
	Terminator	YES(ON)	-

4.7.5. 데이터 모니터링 및 설정

■ SD560E 데이터 모니터링

① WideField2 를 이용하여 PLC 에 접속합니다.

② 메뉴에서 'Online -> Device Monitor -> D Data Register'를 선택하고 해당 레지스터를 확인합니다.

■ 데이터 맵 설정의 기본 값 기준으로 레지스터 영역의 데이터는 아래 표와 같습니다.

ADDRESS.1	ADDRESS.2	ADDRESS.3	파라메터	값
D1000	D1030	D1060	트리거	0
D1001	D1031	D1061	통신 상태 플래그	1,0 반복
D1002	D1032	D1062	NPV	-
D1009	D1039	D1069	ALSTS	-
D1010	D1040	D1070	DISTS	-
D1015	D1045	D1075	Alarm Value 1	-
D1016	D1046	D1076	Alarm High Value 1	-
D1017	D1047	D1077	Alarm Low Value 1	-
D1018	D1048	D1078	Alarm Value 2	-
D1019	D1049	D1079	Alarm High Value 2	-
D1020	D1050	D1080	Alarm Low Value 2	-
D1021	D1051	D1081	ALBS	-
			R0 영역, F	W 영역

■ SD560E 설정 값 모니터링

- ① 트리거 영역(D1000)에 해당하는 레지스터에 값 '2(설정 값 읽기)'를 입력합니다.
- ② 트리거가 '2'로 변경된 후 RW 영역에 데이터쓰기 작업이 완료되면 트리거는 '0'으로 변경되고 작업이 완료됩니다.
- ③ 업로드된 RW 영역(D1015~D1029)의 값을 확인합니다.

■ SD560E 설정 값 쓰기를 통한 알람 설정값 변경

- ① Alarm Value 1 (D1045)에 해당하는 레지스터에 설정 값 '50'을 입력합니다.
- ③ 트리거(D1000)에 해당하는 레지스터에 값 '1(설정 값 쓰기)'을 입력합니다.
- ⑤ 트리거가 '1'로 변경된 후 PLC에서 SD560E 로 쓰기가 완료되면 트리거는 '0'로 변경되고 작업이 완료됩니다.

4.8. KEYENCE PLC 와의 연결

4.8.1. 연결 구성도

■ 다음은 KEYENCE PLC 와 Programless 통신을 위한 구성의 예입니다.

4.8.2. 통신 배선

■ SD560E 와 KV-N11L Cassette 를 아래 그림과 같이 배선합니다.

4.8.3. SD560E 설정

■ 4.4.3 SD560E 설정 참조.

4.8.4. PLC 설정

■ 통신 모듈의 설정

① PC와 KV-N14DT를 연결 후 KV Studio를 실행합니다.

② 메뉴에서 'Monitor/Simulator -> Setup communication -> Setup Communication'을 선택합니다.

③ 통신 방식을 USB 로 선택 후 'OK'버튼을 클릭합니다.

③ 메뉴에서 'Monitor/Simulator -> Read from PLC'를 선택하고 Read PLC 창에서 'Execute'를 선택합니다.

④ PLC 읽기가 끝나면 Workspace 창에서 'Unit configuration -> KV-N14'를 더블 클릭합니다.

⑤ Unit Editor 창에서 Exetension cassette(port 1)의 항목을 아래와 같이 설정하고 'Apply'버튼을 클릭하고 창을 닫습니다.

ltem	설정 값		
Operation Mode	Modbus slave mode	-	
Interface	RS-485(2 Wire - type)	-	
Baud rate	38400	SD560E 기본값	
Stop bit	1	SD560E 기본값	
Parity	NONE	SD560E 기본값	
Modbus slave station No. setting method	Unit editor	-	
Modbus slave station No.	1	-	

⑥ 메뉴에서 'Monitor/Simulator -> Transfer to PLC'를 선택하고 Transfer PLC 창에서 'Execute'를 선택합니다.

4.8.5. 데이터 모니터링 및 설정

■ SD560E 데이터 모니터링

① KV Studio 를 이용하여 PLC 에 접속합니다.

- ② 메뉴에서 'Monitor/Simulator -> Monitor Mode'를 선택합니다.
- ④ 메뉴에서 'Monitor/Simulator -> Batch monitor window'를 선택하고 Batch monitor 창에서 데이터를 확인합니다.
- 데이터 맵 설정의 기본 값 기준으로 레지스터 영역의 데이터는 아래 표와 같습니다.

ADDRESS_1	ADDRESS.2	ADDRESS.3	파라메터	값
D1000	D1030	D1060	트리거	0
D1001	D1031	D1061	통신 상태 플래그	1,0 반복
D1002	D1032	D1062	NPV	-
D1009	D1039	D1069	ALSTS	-
D1010	D1040	D1070	DISTS	-
D1015	D1045	D1075	Alarm Value 1	-
D1016	D1046	D1076	Alarm High Value 1	-
D1017	D1047	D1077	Alarm Low Value 1	-
D1018	D1048	D1078	Alarm Value 2	-
D1019	D1049	D1079	Alarm High Value 2	-
D1020	D1050	D1080	Alarm Low Value 2	-
D1021	D1051	D1081	ALBS	-

R0 영역 ______, RW 영역 ______

■ SD560E 설정 값 모니터링

① 트리거 영역(DM1000)에 해당하는 레지스터에 값 '2(설정 값 읽기)'를 입력합니다.

② 트리거가 '2'로 변경된 후 RW 영역에 데이터쓰기 작업이 완료되면 트리거는 '0'으로 변경되고 작업이 완료됩니다.

③ 업로드된 RW 영역(D1015~D1029)의 값을 확인합니다.

■ SD560E 설정 값 쓰기를 통한 알람 설정값 변경

- ① Alarm Value 1 (D1045)에 해당하는 레지스터에 설정 값 '50'을 입력합니다.
- ③ 트리거(D1000)에 해당하는 레지스터에 값 '1(설정 값 쓰기)'을 입력합니다.
- ⑤ 트리거가 '1'로 변경된 후 PLC에서 SD560E 로 쓰기가 완료되면 트리거는 '0'로 변경되고 작업이 완료됩니다.

4.9. SIEMENS PLC 와의 연결

4.9.1. 연결 구성도

■ 다음은 SIEMENS PLC 와 Programless 통신을 위한 구성의 예입니다.

4.9.2. 통신 배선

■ SD560E 와 CM1241 을 아래 그림과 같이 배선합니다.

4.9.3. SD560E 설정

■ 4.4.3 SD560E 설정 참조.

4.9.4. PLC 설정

■ CM1241(RS-485) 모듈 설정

① Slave PLC 의 Project 를 생성합니다.

② Slave PLC 의 Device configuration 에서 CM1241(RS-485)의 Port Configuration 을 아래와 같이 설정합니다.

ltem	설정 값
Transmission rate	9.6kbps
Parity	Even parity
Data bits	8bit per character
Stop bits	1
Wait time	1

③ CM1241 의 Hardware identifier 를 확인한다.

■ Slave PLC 의 Sample Logic Programming

① Modbus 통신 시 주고 받을 데이터가 저장될 Global DB 를 생성한 후 아래와 같이 파라메터를 입력합니다.

ltem	설정 값
Name	MB_HOLD_REG
Data type	Struct
Offset	0.0
Retain	Checked
Accessible form HMI	Checked
Visible in HMI	Checked
Set point	Unchecked

② OB1 에서 MB_COMM_LOAD 를 호출하여 다음과 같이 파라메터를 입력합니다.

ltem	설정 값
REQ	first scan(Address : %M1.0)
PORT	296(CM1241 Hardware identifier 확인)
BAUD	38400
PARITY	0
MB_DB	MB_SLAVE_DB
DONE	Tag_1(Address: %M200.0)
ERROR	Tag_2(Address: %M200.1)
STATUS	Tag_3(Address: %MW202)

설정 값 Item MB ADDR 1 MB HOLD REG P#DB3.DBX0.0 WORD2000

0

MB_SLAVE_DB Tag 4(Address: %MW203)

③ OB1 에서 MB SLAVE 를 호출하여 다음과 같이 파라메터를 입력합니다.

4.9.5. 데이터 모니터링 및 설정

NDR

DR

ERROR

STATUS

■ SD560E 데이터 모니터링

① TIA Portal V13 을 이용하여 PLC 와 연결합니다. ② MB SLAVE DB의 MB HOLD REG 영역에 연결된 SD560E의 순서에 따라 30 워드씩 할당 됩니다.

■ 데이터 맵 설정의 기본 값 기준으로 레지스터 영역의 데이터는 아래 표와 같습니다.

ADDRESS.1	ADDRESS.2	ADDRESS.3	파라메터	값
D1000	D1030	D1060	트리거	0
D1001	D1031	D1061	통신 상태 플래그	1,0 반복
D1002	D1032	D1062	NPV	-
D1009	D1039	D1069	ALSTS	-
D1010	D1040	D1070	DISTS	-
D1015	D1045	D1075	Alarm Value 1	-
D1016	D1046	D1076	Alarm High Value 1	-
D1017	D1047	D1077	Alarm Low Value 1	-
D1018	D1048	D1078	Alarm Value 2	-
D1019	D1049	D1079	Alarm High Value 2	-
D1020	D1050	D1080	Alarm Low Value 2	-
D1021	D1051	D1081	ALBS	-

R0 영역 ______, RW 영역 ____

_

■ SD560E 설정 값 모니터링

① 트리거 영역(DB1000)에 해당하는 레지스터에 값 '2(설정 값 읽기)'를 입력합니다.

② 트리거가 '2'로 변경된 후 RW 영역에 데이터쓰기 작업이 완료되면 트리거는 '0'으로 변경되고 작업이 완료됩니다.

③ 업로드된 RW 영역(DB1015~DB1029)의 값을 확인합니다.

SD560E 설정 값 쓰기를 통한 알람 설정값 변경

① Alarm Value 1 (D1045)에 해당하는 레지스터에 설정 값 '50'을 입력합니다.

③ 트리거(D1000)에 해당하는 레지스터에 값 '1(설정 값 쓰기)'을 입력합니다.

⑤ 트리거가 '1'로 변경된 후 PLC에서 SD560E 로 쓰기가 완료되면 트리거는 '0'로 변경되고 작업이 완료됩니다.

5.그 외 통신기능

5.1. BROADCAST MODE

Broadcast Mode 는 상위 통신장비에서 연결된 모든 SD560E 에 같은 통신 Command 를 송신하여 동일한 작업을 수행하도록 합니다.

■ Broadcast Mode 통신 방법

- Broadcast Mode 로 통신하기 위해서는 통신 Frame 의 Address 부분을 '00'으로 하여 전송합니다.

통신 Command 중 Write 관련 Command 에만 적용 됩니다.

■ Broadcast Mode 사용 가능 프로토콜

- 프로토콜 중 PC-LINK, PC-LINK+SUM, MODBUS-RTU, MODBUS-ASCII 일 경우에 적용이 가능합니다.

5.2. 서비스 포트

- 서비스 포트는 파라메터 설정과 펌웨어 업데이트를 위한 통신 포트입니다.
- 아래 그림과 같이 제품 상단의 'Service Port' 스티커를 제거하면 Micro-USB 단자를 확인할 수 있습니다.

■ 서비스 포트 통신 사양

파라메터	설정 값
프로토콜	PCC1(PC-LINK+SUM)
통신 속도	38400bps
스톱 비트	1
패리티 비트	NONE
데이터 길이	8
통신 주소	1

■ 서비스 포트는 Micro-USB 케이블과 별도의 컨버터를 사용하여야 합니다.(케이블 및 컨버터 별매)

6.레지스터 가이드

- D-Register는 SD560E의 모든 상태를 통신을 통하여 확인 할 수 있도록 제공되는 데이터들의 모임입니다.
- 내용에 따라서 기본적으로 100개 단위로 그룹화 되어 있으며 그 내용은 다음과 같습니다.

D-Register 범위	그룹 명	내용	Read	Write
D0001~D0099	PROCESS	기본 운전 정보 표시 D-Register 그룹	0	۲
D0100~D0199	FUNCTION	운전 관련 설정 D-Register 그룹	0	0
D0200~D0299	SET POINT	SP 설정 D-Register 그룹	0	0
D0400~D0499	ALARM	경보 설정 D-Register 그룹	0	0
D0600~D0699	IN/OUT	입력/제어&전송출력 설정 D-Register 그룹	0	\bigtriangleup
D0700~D0799	PLC/NPL	PLC 설정 관련 D-Register 그룹	0	\triangle

· 〇 : 적용된 범위의 모든 파라메터에서 읽기 또는 쓰기가 가능합니다.

· △ : 적용된 범위에서 부분적으로 읽기 또는 쓰기가 가능합니다.
6.1. PROCESS

PROCESS 그룹에는 SD560E 의 운전시 발생하는 기본 데이터들이 저장되어 있습니다. 이 중에는 각종 상태를 Bit 로 표시하는 Bit Map 정보가 있으며 그 내용은 다음과 같습니다.

■ 상태 정보 D-Register

D-Reg.	기호	내용
D0001	NPV	현재 측정 값
D0002	NSP	현재 설정 값
D0014	ALM.STS	알람 발생 정보
D0015	DI,STS	DI 발생 정보
D0019	ERROR	에러 발생 정보
D0022	HIGH VALUE	입력 PV 상한 값
D0023	LOW VALUE	입력 PV 하한 값

■ 상태 정보 레지스터 Bit Map 정보

BIT	ALARM STATUS	DI STATUS	ERROR STATUS
	D0014		D0019
0	ALM1	DI1	
1	ALM2	DI2	
2	ALM3		
3	ALM4		
4	EVENT1		
5	EVENT2		
6	EVENT3(Option)		
7	EVENT4(Option)		
8	HBA		+OVER
9	LBA		-OVER
10	TIMER1		S.OPN
11	TIMER2		
12			
13			
14			
15			

6.2. FUNCTION GROUP

■ FUNCTION 그룹은 운전 및 기능설정과 관련된 D-Register 로 구성되어 있습니다.

D-Reg.	기호	내용
D0135	US1	사용자 화면 등록 1
D0136	US2	사용자 화면 등록 2
D0137	LOCK	키 잠금 설정
D0138	DI.SL	외부 접점 입력의 동작 설정
D0139	DSP.H	센서 입력 값의 표시 상한값 설정
D0140	DSP.L	센서 입력 값의 표시 하한값 설정

6.4. ALARM GROUP

■ ALARM 그룹은 알람 설정을 위한 D-Register 로 구성되어 있습니다.

D-Reg.	기호	내용
D0401~D0404	ALT1 ~ ALT4	경보 1~4의 종류 설정
D0406~D0409	AL1 ~ AL4	경보 1~4의 경보 값 설정
D0411~D0414	A1.DB ~ A4.DB	경보 1~4의 불감대 설정
D0416~D0419	A1.DY ~ A4.DY	경보 1~4의 지연 시간 설정
D0421~D0424	A1.H ~ A4.H	경보 1~4의 상한 편차 값 설정
D0426~D0429	A1.L ~ A4.L	경보 1~4의 하한 편차 값 설정
D0426~D0429	A1.L ~ A4.L	경보 1~4의 하한 편차 값 설정

6.5. IN/OUT GROUP

■ IN/OUT 그룹은 입력 및 제어 출력을 설정하기 위한 D-Register 로 구성되어 있습니다.

D-Reg.	기호	내용
D0601	IN-T	센서 종류 설정
D0602	IN-U	센서 단위 설정
D0603, D0604	IN.RH, IN.RL	입력 범위의 상/하한 값 설정
D0605	IN.DP	소수점 위치 설정
D0606, D0607	IN.SH, IN.SL	입력 스케일의 상/하한 값 설정
D0608	IN.FL	측정 값 필터 설정
D0609	B.SL	Burn-Out 선택
D0610	R.SL	기준접점보상 기능 선택
D0611 ~ D0613	BS.P1 ~ BS.P3	보정 값 설정을 위한 보정 구간 설정 1~3
D0615	BSO	IN.RL에 적용되는 보정값 설정
D0616~D0618	BS1 ~ BS3	보정 구간 1~3에 적용되는 보정값 설정
D0619	BS4	IN.RH에 적용되는 보정값 설정
D0621	AL.BS	측정 표시 값의 전구간 OFFSET 설정
D0622	D.FL	측정 표시 값의 Filter 기능 선택
D0651	RET.T	전송 출력 종류 설정
D0652, D0653	RET.H, RET.L	전송 출력 상/하한 값 설정

6.6. COMM GROUP

COMM 그룹은 통신을 설정하기 위한 D-Register 와 현재 적용된 설정값을 확인할 수 있는 D-Register 로 구성되어 있습니다.

D-Reg.	기호	내용			
D0661	COM.P	통신 프로토콜 설정			
D0662	BAUD	통신 속도 설정			
D0663	PRTY	통신 패러티 비트 설정			
D0664	S.BIT	통신 스톱 비트 설정			
D0665	D.LEN	통신 데이터 길이 설정			
D0666	ADDR	통신 주소 설정			
D0667	RP.TM	통신 응답시간 설정			
D0668	RBS	협조 운전시 SLAVE 에 더해지는 설정 값			
D0673	COM.P	통신 프로토콜 읽기			
D0674	BAUD	통신 속도 읽기			
D0675	PRTY	통신 패러티 비트 읽기			
D0676	S.BIT	통신 스톱 비트 읽기			
D0677	D.LEN	통신 데이터 길이 읽기			
D0678	ADDR	통신 주소 읽기			
D0679	RP.TM	통신 응답시간 읽기			

6.7. PLC GROUP

■ PLC 그룹은 Programless 통신을 설정하기 위한 D-Register 로 구성되어 있습니다.

D-Reg.	기호	내용			
D0710	SW.TM	송신 지연 시간 설정			
D0711	RW.TM	수신 대기 시간 설정			
D0712	MU.NO	최대 연결 개수 설정			
D0713	R.TYP	레지스터 타입 설정			
D0714	S.ADR	시작주소 설정			
D0715	MAP.S	데이터 맵 설정			
D0716~D0728	RO.01~RO.13	읽기 영역 주소 1 ~13 설정			
D0729~D0743	RW.01~RW.15	읽기/쓰기 영역 주소 1 ~15 설정			

6.8. NPL GROUP

■ NPL 그룹은 Programless 통신시 현재 사용되는 설정 값을 확인할 수 있는 D-Register 로 구성되어 있습니다.

D-Reg.	기호	내용
D0751	N.SWT	송신 지연 시간
D0752	N.RWT	수신 대기 시간
D0754	N.RTY	레지스터 타입
D0755	N.SAD	시작 주소
D0757~D0769	N.001~N.013	읽기 영역 주소 1~13
D0770~D0784	N.W01~N.W15	읽기/쓰기 영역 주소 1~15

6.9. D-Register **H**

D.D.	PROCESS	FUNCTION	SET POINT	SIGNAL	ALARM	PID	IN/OUT	PLC
D-Reg.	0	100	200	300	400	500	600	700
0								
1	NPV				ALT1		IN-T	
2					ALT2		IN-U	
3					ALT3		IN.RH	
4					ALT4		IN.RL	
5							IN.DP	
6					AL1		IN.SH	
7					AL2		IN.SL	
8					AL3		IN.FL	
9					AL4		B.SL	
10							R.SL	SW.TM
11					A1.DB		BS.P1	RW.TM
12					A2.DB		BS.P2	MU.NO
13					A3.DB		BS.P3	R.TYPE
14	ALM.STS				A4.DB			S.ADR
15	DI.STS						BSO	MAP.S
16					A1.DY		BS1	RO.01
17					A2.DY		BS2	RO.02
18					A3.DY		BS3	RO.03
19	ERROR				A4.DY		BS4	RO.04
20								RO.05
21					AL1.H		AL.BS	RO.06
22	PV.LO				AL2.H		D.FL	RO.07
23	PV.HI				AL3.H			RO.08
24					AL4.H			RO.09
25								RO.10
26					AL1.L			RO.11
27					AL2.L			RO.12
28					AL3.L			RO.13
29					AL4.L			RW.01
30								RW.02
31								RW.03
32								RW.04
33								RW.05
34								RW.06
35		US1						RW.07
36		US2						RW.08
37		LOCK						RW.09
38		DI.SL						RW.10
39		DSP.H						RW.12
40		DSP.L						RW.13
41								RW.14
42								RW.15
43								
44								
45								
46								
47								
48								
49								

D-Dog	PROCESS	FUNCTION	SET POINT	SIGNAL	ALARM	PID	IN/OUT	PLC
D-Reg.	0	100	200	300	400	500	600	700
50								
51							RET.T	N.SWT
52							RET.H	N.RWT
53							RET.L	
54								N.RTY
55								N.SAD
56								
57								N.001
58								N.002
59								N.003
60								N.004
61							COM.P	N.005
62							BAUD	N.006
63							PRTY	N.007
64							S.BIT	N.008
65							D.LEN	N.009
66							ADDR	N.010
67							RP.TM	N.011
68							RBS	N.012
69								N.013
70								N.W01
71								N.W02
72								N.W03
73							COM.P	N.W04
74							BAUD	N.W05
75							PRTY	N.W06
76							S.BIT	N.W07
77							D.LEN	N.W08
78							ADDR	N.W09
79							RP.TM	N.W010
80								N.W011
81								N.W012
82								N.W013
83								N.W014
84								N.W015
85						-	-	
86								
8/						<u>├</u> ───	+	
88						<u>├</u> ───	+	
89								
90							-	
91								
92						-		
93						-		
94								
32						-		
90								
9/						-		
30						-		
77								